ASD detection using an advanced deep neural network

被引:4
|
作者
Mohanty, Ashima Sindhu [1 ]
Parida, Priyadarsan [2 ]
Patra, Krishna Chandra [1 ]
机构
[1] Sambalpur Univ, Dept Elect, Sambalpur 768019, Odisha, India
[2] GIET Univ, Dept Elect & Commun Engn, Rayagada 765022, Odisha, India
来源
关键词
ASD; Standardization; Feature extraction; Classification; Performance parameters;
D O I
10.1080/02522667.2022.2133220
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
Autism Spectrum Disorder (ASD) is a neurological disorder which at present has become one of the most severe developmental disabilities causing social and behavioral changes in individuals. During the first 6 to 18 months of a person's life, early indicators of ASD can be seen as further regression in development with ageing up to 36 months. Early recognition of the disorder is one of the solutions to the problem so that precautionary measures can be adopted against the disorder. In this proposed work, along with all categories, major emphasis is given to the unbalanced toddler data set. The original data sets are first, pre-processed following splitting of the pre-processed data into training and test data. For classification, a deep network model is implemented which is trained by the training data. The trained model then got tested by the test data for validating the performance of the classifier model to detect ASD class.
引用
收藏
页码:2143 / 2152
页数:10
相关论文
共 50 条
  • [41] Malware Detection Using Gist Features and Deep Neural Network
    Krithika, V
    Vijaya, M. S.
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 800 - 805
  • [42] A deep neural network approach to QRS detection using autoencoders*,**
    Belkadi, Mohamed Amine
    Daamouche, Abdelhamid
    Melgani, Farid
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184 (184)
  • [43] Breast Cancer Detection using Deep Convolutional Neural Network
    Mechria, Hana
    Gouider, Mohamed Salah
    Hassine, Khaled
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 655 - 660
  • [44] Sperm Abnormality Detection Using Sequential Deep Neural Network
    Shahzad, Suleman
    Ilyas, Muhammad
    Lali, M. Ikram Ullah
    Rauf, Hafiz Tayyab
    Kadry, Seifedine
    Nasr, Emad Abouel
    MATHEMATICS, 2023, 11 (03)
  • [45] Detection of Driver Fatigue State using Deep Neural Network
    Anwar, Noreen
    Xiong, Gang
    Guo, Miao
    Ye, Peijun
    Ali, Hub
    Wei, Qinglai
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 79 - 84
  • [46] Lung nodule Detection and Classification using Deep Neural Network
    Ullah, Ibrahim
    Kuri, Saumitra Kumar
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 1062 - 1065
  • [47] Fabric Defect Detection Using Deep Convolutional Neural Network
    Maheshwari S. Biradar
    B. G. Shiparamatti
    P. M. Patil
    Optical Memory and Neural Networks, 2021, 30 : 250 - 256
  • [48] Effective image splicing detection using deep neural network
    Priyadharsini, S.
    Devi, K. Kamala
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (02)
  • [49] Fabric Defect Detection Using Deep Convolution Neural Network
    Fan, Junjun
    Wong, Wai Keung
    Wen, Jiajun
    Gao, Can
    Mo, Dongmei
    Lai, Zhihui
    AATCC JOURNAL OF RESEARCH, 2021, 8 (1_SUPPL) : 144 - 151
  • [50] Smart Vessel Detection using Deep Convolutional Neural Network
    Joseph, Iwin Thanakumar S.
    Sasikala, J.
    Juliet, Sujitha D.
    Raj, Benson Edwin S.
    2018 FIFTH HCT INFORMATION TECHNOLOGY TRENDS (ITT): EMERGING TECHNOLOGIES FOR ARTIFICIAL INTELLIGENCE, 2018, : 28 - 32