Time-Scales to Equipartition in the Fermi-Pasta-Ulam Problem: Finite-Size Effects and Thermodynamic Limit

被引:75
作者
Benettin, G. [1 ]
Ponno, A. [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
关键词
Fermi-Pasta-Ulam; Equipartition time; Thermodynamic limit; METASTABILITY; EQUILIBRIUM; SYSTEMS;
D O I
10.1007/s10955-011-0277-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate numerically the common alpha+beta and the pure beta FPU models, as well as some higher order generalizations. We consider initial conditions in which only low-frequency normal modes are excited, and perform a very accurate systematic study of the equilibrium time as a function of the number N of particles, the specific energy epsilon, and the parameters alpha and beta. While at any fixed N the equilibrium time is found to be a stretched exponential in 1/epsilon, in the thermodynamic limit, i.e. for N -> a at fixed epsilon, we observe a crossover to a power law. Concerning the (usually disregarded) dependence of T (eq) on alpha and beta, we find it is nontrivial, and propose and test a general law. A central role is played by the comparison of the FPU models with the Toda model.
引用
收藏
页码:793 / 812
页数:20
相关论文
共 28 条
[1]   EXPONENTIAL STABILITY OF STATES CLOSE TO RESONANCE IN INFINITE-DIMENSIONAL HAMILTONIAN-SYSTEMS [J].
BAMBUSI, D ;
GIORGILLI, A .
JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (3-4) :569-606
[2]  
Bambusi D, 2008, LECT NOTES PHYS, V728, P191, DOI 10.1007/978-3-540-72995-2_5
[3]   Time scale for energy equipartition in a two-dimensional FPU model [J].
Benettin, G .
CHAOS, 2005, 15 (01)
[4]   On the numerical integration of FPU-like systems [J].
Benettin, G. ;
Ponno, A. .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (07) :568-573
[5]  
Benettin G, 2008, LECT NOTES PHYS, V728, P151, DOI 10.1007/978-3-540-72995-2_4
[6]   The Fermi-Pasta-Ulam Problem: Scaling Laws vs. Initial Conditions [J].
Benettin, G. ;
Livi, R. ;
Ponno, A. .
JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (5-6) :873-893
[7]   A study of the Fermi-Pasta-Ulam problem in dimension two [J].
Benettin, Giancarlo ;
Gradenigo, Giacomo .
CHAOS, 2008, 18 (01)
[8]  
Berchialla L, 2004, DISCRETE CONT DYN-A, V11, P855
[9]   Exponentially long times to equipartition in the thermodynamic limit [J].
Berchialla, L ;
Giorgilli, A ;
Paleari, S .
PHYSICS LETTERS A, 2004, 321 (03) :167-172
[10]   Fermi-Pasta-Ulam phenomenon for generic initial data [J].
Carati, A. ;
Galgani, L. ;
Giorgilli, A. ;
Paleari, S. .
PHYSICAL REVIEW E, 2007, 76 (02)