The role of the gut microbiome in sustainable teleost aquaculture

被引:117
作者
Perry, William Bernard [1 ]
Lindsay, Elle [2 ]
Payne, Christopher James [3 ]
Brodie, Christopher [4 ,5 ]
Kazlauskaite, Raminta [2 ]
机构
[1] Bangor Univ, Mol Ecol & Fisheries Genet Lab, Bangor LL57 2UW, Gwynedd, Wales
[2] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland
[3] Univ Stirling, Inst Aquaculture, Stirling FK9 4LA, Scotland
[4] Univ Salford, Ecosyst & Environm Res Ctr, Salford M5 4WT, Lancs, England
[5] Liverpool John Moores Univ, Sch Biol & Environm Sci, Liverpool L3 5UG, Merseyside, England
基金
英国自然环境研究理事会;
关键词
fish; teleost; gut; microbiome; aquaculture; review; EUROPEAN SEA-BASS; INTESTINAL MICROBIOTA; RAINBOW-TROUT; ONCORHYNCHUS-MYKISS; NILE TILAPIA; AEROMONAS-HYDROPHILA; DISEASE RESISTANCE; VIBRIO-ANGUILLARUM; WATER-QUALITY; FISH-MEAL;
D O I
10.1098/rspb.2020.0184
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
As the most diverse vertebrate group and a major component of a growing global aquaculture industry, teleosts continue to attract significant scientific attention. The growth in global aquaculture, driven by declines in wild stocks, has provided additional empirical demand, and thus opportunities, to explore teleost diversity. Among key developments is the recent growth in microbiome exploration, facilitated by advances in high-throughput sequencing technologies. Here, we consider studies on teleost gut microbiomes in the context of sustainable aquaculture, which we have discussed in four themes: diet, immunity, artificial selection and closed-loop systems. We demonstrate the influence aquaculture has had on gut microbiome research, while also providing a road map for the main deterministic forces that influence the gut microbiome, with topical applications to aquaculture. Functional significance is considered within an aquaculture context with reference to impacts on nutrition and immunity. Finally, we identify key knowledge gaps, both methodological and conceptual, and propose promising applications of gut microbiome manipulation to aquaculture, and future priorities in microbiome research. These include insect-based feeds, vaccination, mechanism of pro- and prebiotics, artificial selection on the hologenome, in-water bacteriophages in recirculating aquaculture systems (RAS), physiochemical properties of water and dysbiosis as a biomarker.
引用
收藏
页数:10
相关论文
共 119 条
[1]   Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources [J].
Ahmad, Irshad H. ;
Verma, A. K. ;
Rani, A. M. Babitha ;
Rathore, G. ;
Saharan, Neelam ;
Gora, Adnan Hussain .
AQUACULTURE, 2016, 457 :61-67
[2]   The Fate of Bacteriophages in Recirculating Aquaculture Systems (RAS)-Towards Developing Phage Therapy for RAS [J].
Almeida, Gabriel M. F. ;
Makela, Kati ;
Laanto, Elina ;
Pulkkinen, Jani ;
Vielma, Jouni ;
Sundberg, Lotta-Riina .
ANTIBIOTICS-BASEL, 2019, 8 (04)
[3]   Decreasing levels of the fish pathogen Streptococcus iniae following inoculation into the sludge digester of a zero-discharge recirculating aquaculture system (RAS) [J].
Aruety, Tal ;
Brunner, Tali ;
Ronen, Zeev ;
Gross, Amit ;
Sowers, Kevin ;
Zilberg, Dina .
AQUACULTURE, 2016, 450 :335-341
[4]   The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare) [J].
Azimirad, Mahmood ;
Meshkini, Saeed ;
Ahmadifard, Nasrollah ;
Hoseinifar, Seyed Hossein .
FISH & SHELLFISH IMMUNOLOGY, 2016, 54 :516-522
[5]   The role of probiotics in aquaculture [J].
Balcazar, Jos Luis ;
de Blas, Ignacio ;
Ruiz-Zarzuela, Imanol ;
Cunningham, David ;
Vendrell, Daniel ;
Muzquiz, Jos Luis .
VETERINARY MICROBIOLOGY, 2006, 114 (3-4) :173-186
[6]   Changes in intestinal microbiota, immune- and stress-related transcript levels in Senegalese sole (Solea senegalensis) fed plant ingredient diets intercropped with probiotics or immunostimulants [J].
Batista, S. ;
Ozorio, R. O. A. ;
Kollias, S. ;
Dhanasiri, A. K. ;
Lokesh, J. ;
Kiron, V. ;
Valente, L. M. P. ;
Fernandes, J. M. O. .
AQUACULTURE, 2016, 458 :149-157
[7]   Effects of starvation, subsequent feeding and photoperiod on flesh quality in farmed cod (Gadus morhua) [J].
Bjornevik, M. ;
Hansen, H. ;
Roth, B. ;
Foss, A. ;
Vikingstad, E. ;
Solberg, C. ;
Imsland, A. K. .
AQUACULTURE NUTRITION, 2017, 23 (02) :285-292
[8]   Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish [J].
Borrelli, Luca ;
Aceto, Serena ;
Agnisola, Claudio ;
De Paolo, Sofia ;
Dipineto, Ludovico ;
Stilling, Roman M. ;
Dinan, Timothy G. ;
Cryan, John F. ;
Menna, Lucia F. ;
Fioretti, Alessandro .
SCIENTIFIC REPORTS, 2016, 6
[9]   Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota [J].
Boutin, Sebastien ;
Bernatchez, Louis ;
Audet, Celine ;
Derome, Nicolas .
PLOS ONE, 2013, 8 (12)
[10]   Analysis of the gut and gill microbiome of resistant and susceptible lines of rainbow trout (Oncorhynchus mykiss) [J].
Brown, Ryan M. ;
Wiens, Gregory D. ;
Salinas, Irene .
FISH & SHELLFISH IMMUNOLOGY, 2019, 86 :497-506