On the structure of Leibniz algebras whose subalgebras are ideals or core-free

被引:0
作者
Chupordia, V. A. [1 ]
Kurdachenko, L. A. [1 ]
Semko, N. N. [2 ]
机构
[1] Oles Honchar Dnipro Natl Univ, 72 Gagarin Ave, UA-49010 Dnipro, Ukraine
[2] Univ State Fiscal Serv Ukraine, 31 Univ Skaya Str, UA-08205 Irpin, Ukraine
来源
ALGEBRA AND DISCRETE MATHEMATICS | 2020年 / 29卷 / 02期
关键词
Leibniz algebra; Lie algebra; ideal; core-free subalgebras; monolithic algebra; extraspecial algebra; CENTRAL SERIES;
D O I
10.12958/adm1533
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]] - [b, [a, c]] for all a, b, c is an element of L. Leibniz algebras are generalizations of Lie algebras. A subalgebra S of a Leibniz algebra L is called a core-free, if S does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free.
引用
收藏
页码:180 / 194
页数:15
相关论文
共 12 条
  • [1] Bloh A., 1965, Dokl. Akad. Nauk SSSR, V165, P471
  • [2] Bloh A.M., 1967, DOKL AKAD NAUK SSSR, P266
  • [3] Bloh A.M., 1971, Moskow. Gos. Ped. Inst. Ucen., V375, P9
  • [4] On some "minimal" Leibniz algebras
    Chupordia, V. A.
    Kurdachenko, L. A.
    Subbotin, I. Ya.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (05)
  • [5] From Groups to Leibniz Algebras: Common Approaches, Parallel Results
    Kurdachenko, L. A.
    Subbotin, I. Ya.
    Semko, N. N.
    [J]. ADVANCES IN GROUP THEORY AND APPLICATIONS, 2018, 5 : 1 - 31
  • [6] Kurdachenko L.A., 2015, SERDICA MATH J, V41, P293
  • [7] KURDACHENKO LA, 2017, DOP NAT AKAD NAUK UK, V6, P9, DOI DOI 10.15407/dopovidi2017.06.009
  • [8] On some properties of the upper central series in Leibniz algebras
    Kurdachenko, Leonid A.
    Otal, Javier
    Subbotin, Igor Ya.
    [J]. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2019, 60 (02): : 161 - 175
  • [9] Relationships between factors of canonical central series of Leibniz algebras
    Kurdachenko, Leonid A.
    Otal, Javier
    Pypka, Alexander A.
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2016, 2 (02) : 565 - 577
  • [10] The Leibniz algebras whose subalgebras are ideals
    Kurdachenko, Leonid A.
    Semko, Nikolai N.
    Subbotin, Igor Ya.
    [J]. OPEN MATHEMATICS, 2017, 15 : 92 - 100