Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase

被引:48
作者
de Kok, Stefan
Yilmaz, Duygu
Suir, Erwin
Pronk, Jack T.
Daran, Jean-Marc
van Maris, Antonius J. A. [1 ]
机构
[1] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands
关键词
Metabolic engineering; Synthetic biology; Yeast; Energetics; beta-Phosphoglucomutase; Maltase; BIOCHEMICAL-CHARACTERIZATION; TREHALOSE PHOSPHORYLASE; BETA-PHOSPHOGLUCOMUTASE; GENE ENCODES; YEAST; PURIFICATION; CLONING; VECTORS; ACID; FERMENTATION;
D O I
10.1016/j.ymben.2011.06.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Increasing free-energy conservation from the conversion of substrate into product is crucial for further development of many biotechnological processes. In theory, replacing the hydrolysis of disaccharides by a phosphorolytic cleavage reaction provides an opportunity to increase the ATP yield on the disaccharide. To test this concept, we first deleted the native maltose metabolism genes in Saccharomyces cerevisiae. The knockout strain showed no maltose-transport activity and a very low residual maltase activity (0.03 mu mol mg protein(-1) min(-1)). Expression of a maltose phosphorylase gene from Lactobacillus sanfranciscensis and the MAL11 maltose-transporter gene resulted in relatively slow growth (mu(aerobic) 0.09 +/- 0.03 h(-1)). Co-expression of Lactococcus lactis beta-phosphoglucomutase accelerated maltose utilization via this route (mu(aerobic) 0.21 +/- 0.01 h(-1), mu(aerobic) 0.10 +/- 0.00 h(-1)). Replacing maltose hydrolysis with phosphorolysis increased the anaerobic biomass yield on maltose in anaerobic maltose-limited chemostat cultures by 26%, thus demonstrating the potential of phosphorolysis to improve the free-energy conservation of disaccharide metabolism in industrial microorganisms. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:518 / 526
页数:9
相关论文
共 63 条
[1]   Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity [J].
Abbott, Derek A. ;
van den Brink, Joost ;
Minneboo, Inge M. K. ;
Pronk, Jack T. ;
van Maris, Antonius J. A. .
FEMS YEAST RESEARCH, 2009, 9 (03) :349-357
[2]   A suite of Gateway® cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae [J].
Alberti, Simon ;
Gitler, Aaron D. ;
Lindquist, Susan .
YEAST, 2007, 24 (10) :913-919
[3]  
ALEXANDER JK, 1968, J BIOL CHEM, V243, P2899
[4]   Purification and biochemical characterization of the ATH1 gene product, vacuolar acid trehalase, from Saccharomyces cerevisiae [J].
Alizadeh, P ;
Klionsky, DJ .
FEBS LETTERS, 1996, 391 (03) :273-278
[5]   ANOMALOUS MUTAROTATION OF GLUCOSE 6-PHOSPHATE - AN EXAMPLE OF INTRAMOLECULAR CATALYSIS [J].
BAILEY, JM ;
FISHMAN, PH ;
PENTCHEV, PG .
BIOCHEMISTRY, 1970, 9 (05) :1189-&
[6]   TREHALOSE PHOSPHORYLASE FROM EUGLENA-GRACILIS [J].
BELOCOPI.E ;
MARECHAL, LR .
BIOCHIMICA ET BIOPHYSICA ACTA, 1970, 198 (01) :151-&
[7]   Quantitative Physiology of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates [J].
Boender, Leonie G. M. ;
de Hulster, Erik A. F. ;
van Maris, Antonius J. A. ;
Daran-Lapujade, Pascale A. S. ;
Pronk, Jack T. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (17) :5607-5614
[8]   A FAMILY OF HEXOSEPHOSPHATE MUTASES IN SACCHAROMYCES-CEREVISIAE [J].
BOLES, E ;
LIEBETRAU, W ;
HOFMANN, M ;
ZIMMERMANN, FK .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 220 (01) :83-96
[9]   Rapid Expansion and Functional Divergence of Subtelomeric Gene Families in Yeasts [J].
Brown, Chris A. ;
Murray, Andrew W. ;
Verstrepen, Kevin J. .
CURRENT BIOLOGY, 2010, 20 (10) :895-903
[10]   An in vivo data-driven framework for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data [J].
Canelas, Andre B. ;
Ras, Cor ;
ten Pierick, Angela ;
van Gulik, Walter M. ;
Heijnen, Joseph J. .
METABOLIC ENGINEERING, 2011, 13 (03) :294-306