Regularized supervised Bayesian approach for image deconvolution with regularization parameter estimation

被引:5
|
作者
Laaziri, Bouchra [1 ]
Raghay, Said [1 ]
Hakim, Abdelilah [1 ]
机构
[1] Cadi Ayyad Univ, Fac Sci & Tech, Lab Appl Math & Comp Sci, Marrakech, Morocco
关键词
Image deconvolution; Supervised Bayesian approach; MAP estimation; Regularization; GCV method; GENERALIZED CROSS-VALIDATION; BLIND DECONVOLUTION;
D O I
10.1186/s13634-020-00671-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image deconvolution consists in restoring a blurred and noisy image knowing its point spread function (PSF). This inverse problem is ill-posed and needs prior information to obtain a satisfactory solution. Bayesian inference approach with appropriate prior on the image, in particular with a Gaussian prior, has been used successfully. Supervised Bayesian approach with maximum a posteriori (MAP) estimation, a method that has been considered recently, is unstable and suffers from serious ringing artifacts in many applications. To overcome these drawbacks, we propose a regularized version where we minimize an energy functional combined by the mean square error with H-1 regularization term, and we consider the generalized cross validation (GCV) method, a widely used and very successful predictive approach, for choosing the smoothing parameter. Theoretically, we study the convergence behavior of the method and we give numerical tests to show its effectiveness.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Regularized supervised Bayesian approach for image deconvolution with regularization parameter estimation
    Bouchra Laaziri
    Said Raghay
    Abdelilah Hakim
    EURASIP Journal on Advances in Signal Processing, 2020
  • [2] PARAMETER ESTIMATION FOR LP REGULARIZED IMAGE DECONVOLUTION
    Zhou, Xu
    Zhou, Fugen
    Bai, Xiangzhi
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4892 - 4896
  • [3] Sparse Bayesian blind image deconvolution with parameter estimation
    Bruno Amizic
    Rafael Molina
    Aggelos K Katsaggelos
    EURASIP Journal on Image and Video Processing, 2012
  • [4] SPARSE BAYESIAN BLIND IMAGE DECONVOLUTION WITH PARAMETER ESTIMATION
    Amizic, Bruno
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 626 - 630
  • [5] Sparse Bayesian blind image deconvolution with parameter estimation
    Amizic, Bruno
    Molina, Rafael
    Katsaggelos, Aggelos K.
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2012,
  • [6] Regularization-parameter-free optimization approach for image deconvolution
    Rajora, Sunaina
    Butola, Mansi
    Khare, Kedar
    APPLIED OPTICS, 2021, 60 (19) : 5669 - 5677
  • [7] Regularization Parameter Estimation for Non-Negative Hyperspectral Image Deconvolution
    Song, Yingying
    Brie, David
    Djermoune, El-Hadi
    Henrot, Simon
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) : 5316 - 5330
  • [8] PARAMETER ESTIMATION IN BAYESIAN BLIND DECONVOLUTION WITH SUPER GAUSSIAN IMAGE PRIORS
    Vega, Miguel
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 1632 - 1636
  • [9] OPTIMAL ESTIMATION OF THE REGULARIZATION PARAMETER AND STABILIZING FUNCTIONAL FOR REGULARIZED IMAGE-RESTORATION
    REEVES, SJ
    MERSEREAU, RM
    OPTICAL ENGINEERING, 1990, 29 (05) : 446 - 454
  • [10] Extended Mumford-Shah regularization in Bayesian estimation for blind image deconvolution and segmentation
    Zheng, Hongwei
    Hellwich, Olaf
    COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS, 2006, 4040 : 144 - 158