THE GLOBAL ATTRACTOR OF THE 2D BOUSSINESQ EQUATIONS WITH FRACTIONAL LAPLACIAN IN SUBCRITICAL CASE

被引:9
作者
Huo, Wenru [1 ]
Huang, Aimin [2 ]
机构
[1] Indiana Univ, Dept Math, 831 East Third St,Rawles Hall, Bloomington, IN 47405 USA
[2] Indiana Univ, Inst Sci Comp & Appl Math, 831 East Third St,Rawles Hall, Bloomington, IN 47405 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2016年 / 21卷 / 08期
基金
美国国家科学基金会;
关键词
Boussinesq system; global attractor; fractional laplacian; BOUNDARY VALUE-PROBLEM; WELL-POSEDNESS; MAXIMUM PRINCIPLE; BENARD-PROBLEM; SYSTEM; EULER; CONVECTION; VISCOSITY; EXISTENCE;
D O I
10.3934/dcdsb.2016059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove global well-posedness of strong solutions and existence of the global attractor for the 2D Boussinesq system in a periodic channel with fractional Laplacian in subcritical case. The analysis reveals a relation between the Laplacian exponent and the regularity of the spaces of velocity and temperature.
引用
收藏
页码:2531 / 2550
页数:20
相关论文
共 44 条
[1]  
[Anonymous], 1991, LEZIONI LINCEI 1988
[2]  
[Anonymous], 2012, Infinite-dimensional dynamical systems in mechanics and physics, DOI 10.1007/978-1-4684-0313-8
[3]  
[Anonymous], 1984, Navier-Stokes equations, theory and numerical analysis
[4]  
[Anonymous], HDB DYNAMICAL SYST B
[5]  
Babin A. V., 1992, STUDIES MATH ITS APP
[6]  
Cannon J., 1980, Lecture Notes in Math., V771, P129
[7]   Local existence and blow-up criterion for the Boussinesq equations [J].
Chae, D ;
Nam, HS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :935-946
[8]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[9]   Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions [J].
Constantin, Peter ;
Lewicka, Marta ;
Ryzhik, Lenya .
NONLINEARITY, 2006, 19 (11) :2605-2615
[10]   A maximum principle applied to quasi-geostrophic equations [J].
Córdoba, A ;
Córdoba, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :511-528