Distribution-free, Risk-controlling Prediction Sets

被引:66
作者
Bates, Stephen [1 ]
Angelopoulos, Anastasios [1 ]
Lei, Lihua [2 ]
Malik, Jitendra [1 ]
Jordan, Michael [1 ]
机构
[1] Univ Calif Berkeley, 387 Soda Hall, Berkeley, CA 94720 USA
[2] Stanford Univ, 390 Serra Mall, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Uncertainty quantification; conformal prediction; predictive uncertainty; set-valued prediction; INEQUALITIES;
D O I
10.1145/3478535
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
While improving prediction accuracy has been the focus of machine learning in recent years, this alone does not suffice for reliable decision-making. Deploying learning systems in consequential settings also requires calibrating and communicating the uncertainty of predictions. To convey instance-wise uncertainty for prediction tasks, we show how to generate set-valued predictions from a black-box predictor that controls the expected loss on future test points at a user-specified level. Our approach provides explicit finite-sample guarantees for any dataset by using a holdout set to calibrate the size of the prediction sets. This framework enables simple, distribution-free, rigorous error control for many tasks, and we demonstrate it in five large-scale machine learning problems: (1) classification problems where some mistakes are more costly than others; (2) multi-label classification, where each observation has multiple associated labels; (3) classification problems where the labels have a hierarchical structure; (4) image segmentation, where we wish to predict a set of pixels containing an object of interest; and (5) protein structure prediction. Last, we discuss extensions to uncertainty quantification for ranking, metric learning, and distributionally robust learning.
引用
收藏
页数:34
相关论文
共 62 条
[1]  
Angelopoulos Anastasios Nikolas, 2021, INT C LEARN REPR
[2]   THE NONEXISTENCE OF CERTAIN STATISTICAL PROCEDURES IN NONPARAMETRIC PROBLEMS [J].
BAHADUR, RR ;
SAVAGE, LJ .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (04) :1115-1122
[3]   PREDICTIVE INFERENCE WITH THE JACKKNIFE [J].
Barber, Rina Foygel ;
Candes, Emmanuel J. ;
Ramdas, Aaditya ;
Tibshirani, Ryan J. .
ANNALS OF STATISTICS, 2021, 49 (01) :486-507
[4]   The limits of distribution-free conditional predictive inference [J].
Barber, Rina Foygel ;
Candes, Emmanuel J. ;
Ramdas, Aaditya ;
Tibshirani, Ryan J. .
INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2021, 10 (02) :455-482
[5]   On Hoeffding's inequalities [J].
Bentkus, V .
ANNALS OF PROBABILITY, 2004, 32 (02) :1650-1673
[6]   Towards automatic polyp detection with a polyp appearance model [J].
Bernal, J. ;
Sanchez, J. ;
Vilarino, F. .
PATTERN RECOGNITION, 2012, 45 (09) :3166-3182
[7]  
Bernstein S. N., 1946, The Theory of Probabilities
[8]   HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy [J].
Borgli, Hanna ;
Thambawita, Vajira ;
Smedsrud, Pia H. ;
Hicks, Steven ;
Jha, Debesh ;
Eskeland, Sigrun L. ;
Randel, Kristin Ranheim ;
Pogorelov, Konstantin ;
Lux, Mathias ;
Nguyen, Duc Tien Dang ;
Johansen, Dag ;
Griwodz, Carsten ;
Stensland, Hakon K. ;
Garcia-Ceja, Enrique ;
Schmidt, Peter T. ;
Hammer, Hugo L. ;
Riegler, Michael A. ;
Halvorsen, Pal ;
de Lange, Thomas .
SCIENTIFIC DATA, 2020, 7 (01)
[9]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133
[10]  
Carmon Y, 2019, 33 C NEURAL INFORM P, V32