A hierarchy of generalized Jaulent-Miodek equations and their explicit solutions

被引:2
作者
Geng, Xianguo [1 ]
Guan, Liang [2 ]
Xue, Bo [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, 100 Kexue Rd, Zhengzhou 450001, Henan, Peoples R China
[2] Anyang Normal Univ, Sch Math & Stat, 436 Xiange Rd, Anyang 455000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Jaulent-Miodek hierarchy; algebro-geometric method; explicit solutions; QUASI-PERIODIC SOLUTIONS; FLOWS;
D O I
10.1142/S0219887818500020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A hierarchy of generalized Jaulent-Miodek (JM) equations related to a new spectral problem with energy-dependent potentials is proposed. Depending on the Lax matrix and elliptic variables, the generalized JM hierarchy is decomposed into two systems of solvable ordinary differential equations. Explicit theta function representations of the meromorphic function and the Baker-Akhiezer function are constructed, the solutions of the hierarchy are obtained based on the theory of algebraic curves.
引用
收藏
页数:21
相关论文
共 28 条
[1]  
Ablowitz M. J., 1981, SIAM Studies in Applied Mathematics, V4, DOI 10.1137/1.9781611970883
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]  
Belokolos E. D., 1994, Algebro-geometric approach to nonlinear integrable equations
[4]  
DATE E, 1976, SUP PROG THEOR PHYS, P107, DOI 10.1143/PTPS.59.107
[5]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[6]  
Geng X. G., 1988, CHINESE Q J MATH, V3, P7
[7]   Quasi-periodic solutions for some (2+1)-dimensional integrable models generated by the Jaulent-Miodek hierarchy [J].
Geng, XG ;
Cao, CW ;
Dai, HH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (05) :989-1004
[8]   Quasi-periodic solutions of mixed AKNS equations [J].
Geng, Xianguo ;
Xue, Bo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (11) :3662-3674
[9]   Soliton solutions and quasiperiodic solutions of modified Korteweg-de Vries type equations [J].
Geng, Xianguo ;
Xue, Bo .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
[10]  
Gesztesy F., 2003, Dimensional Continuous Models, VI