A deep learning approach for brain tumour detection system using convolutional neural networks

被引:1
|
作者
Kalaiselvi, T. [1 ]
Padmapriya, S. T. [1 ]
Sriramakrishnan, P. [2 ]
Somasundaram, K. [1 ]
机构
[1] Gandhigram Rural Inst Deemed Univ, Dept Comp Sci & Applicat, Gandhigram 624302, Tamil Nadu, India
[2] Kalasalingam Acad Res & Educ Deemed Univ, Dept Comp Applicat, Krishnankoil 626126, Tamil Nadu, India
关键词
neural networks; MRI; magnetic resonance imaging; brain tumour; deep learning; tumour detection; CNN; convolutional neural network; BraTS Dataset; activation functions; WBA datasets;
D O I
10.1504/IJDSDE.2021.120046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The proposed work is aimed to develop convolutional neural network (CNN) architecture based computer aided diagnostic system for human brain tumour detection process from magnetic resonance imaging (MRI) volumes. CNN is a class of deep learning networks that are commonly applied to analyse voluminous images. In the proposed method, a CNN model is constructed and trained using MRI volumes of BraTS2013 data. More than 4000 images of normal and tumour slices are used to train the proposed CNN system with 2-layers. The system is tested with about 1000 slices from BraTS and got very accurate results about 90-98% of accuracy. Further, the performance of proposed CNN system is tested by taking a set of clinical MRI volumes of popular hospital. The obtained results are discussed and focused for the future improvement of the proposed system.
引用
收藏
页码:514 / 526
页数:13
相关论文
共 50 条
  • [41] Detection and Classification of Human Stool Using Deep Convolutional Neural Networks
    Choy, Yin Pui
    Hu, Guoqing
    Chen, Jia
    IEEE ACCESS, 2021, 9 : 160485 - 160496
  • [42] Deep Convolutional Networks for Automated Detection of Epileptogenic Brain Malformations
    Gill, Ravnoor S.
    Hong, Seok-Jun
    Fadaie, Fatemeh
    Caldairou, Benoit
    Bernhardt, Boris C.
    Barba, Carmen
    Brandt, Armin
    Coelho, Vanessa C.
    d'Incerti, Ludovico
    Lenge, Matteo
    Semmelroch, Mira
    Bartolomei, Fabrice
    Cendes, Fernando
    Deleo, Francesco
    Guerrini, Renzo
    Guye, Maxime
    Jackson, Graeme
    Schulze-Bonhage, Andreas
    Mansi, Tommaso
    Bernasconi, Neda
    Bernasconi, Andrea
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, PT III, 2018, 11072 : 490 - 497
  • [43] Improvement of Automatic Glioma Brain Tumor Detection Using Deep Convolutional Neural Networks
    Altameem, Ayman
    Mallikarjuna, Basetty
    Saudagar, Abdul Khader Jilani
    Sharma, Meenakshi
    Poonia, Ramesh Chandra
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (06) : 530 - 544
  • [44] Modified Region Growing for MRI Brain Image Classification System Using Deep Learning Convolutional Neural Networks
    Jayachandran, A.
    Andrews, J.
    Prabhu, L. Arokia Jesu
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 710 - 717
  • [45] Malware detection approach based on deep convolutional neural networks
    El Merabet, Hoda
    Hajraoui, Abderrahmane
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2023, 20 (1-2) : 145 - 157
  • [46] Detection of Parkinson Disease in Brain MRI using Convolutional Neural Network
    Shah, Pir Masoom
    Zeb, Adnan
    Shafi, Uferah
    Zaidi, Syed Farhan Alam
    Shah, Munam Ali
    2018 24TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC' 18), 2018, : 495 - 500
  • [47] Automatic driver distraction detection using deep convolutional neural networks
    Hossain, Md. Uzzol
    Rahman, Md. Ataur
    Islam, Md. Manowarul
    Akhter, Arnisha
    Uddin, Md. Ashraf
    Paul, Bikash Kumar
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2022, 14
  • [48] Enhanced Network Intrusion Detection using Deep Convolutional Neural Networks
    Naseer, Sheraz
    Saleem, Yasir
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (10): : 5159 - 5178
  • [49] Simultaneous brain structure segmentation in magnetic resonance images using deep convolutional neural networks
    Maruyama, Tomoko
    Hayashi, Norio
    Sato, Yusuke
    Ogura, Toshihiro
    Uehara, Masumi
    Ogura, Akio
    Watanabe, Haruyuki
    Kitoh, Yoshihiro
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2021, 14 (04) : 358 - 365
  • [50] Simultaneous brain structure segmentation in magnetic resonance images using deep convolutional neural networks
    Tomoko Maruyama
    Norio Hayashi
    Yusuke Sato
    Toshihiro Ogura
    Masumi Uehara
    Akio Ogura
    Haruyuki Watanabe
    Yoshihiro Kitoh
    Radiological Physics and Technology, 2021, 14 : 358 - 365