Nanomaterials and Technologies for Lithium-Ion Hybrid Supercapacitors

被引:85
作者
Gu, Haichen [1 ]
Zhu, Yuan-En [1 ]
Yang, Jiqian [1 ]
Wei, Jinping [1 ]
Zhou, Zhen [1 ]
机构
[1] Nankai Univ, Natl Inst Adv Mat, Sch Mat Sci & Engn,Tianjin Key Lab Met & Mol Base, Inst New Energy Mat Chem,Collaborat Innovat Ctr C, Tianjin 300350, Peoples R China
关键词
electrochemistry; energy density; nanostructures; power density; supercapacitors; ELECTROCHEMICAL ENERGY-STORAGE; ACTIVATED CARBON CATHODE; POROUS CARBON; ELECTRODE MATERIALS; GRAPHITE ANODE; HIGH-POWER; CAPACITORS; GRAPHENE; PERFORMANCE; NITROGEN;
D O I
10.1002/cnma.201600068
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For developing energy storage devices with both high energy and power density, lithium-ion hybrid supercapacitors (LIHSs) are the optimal candidate to bridge the gap between lithium-ion batteries (LIBs) and conventional supercapacitors. A LIHS consists of a capacitor-type cathode and a LIB-type anode. However, the particle size of LIB-type anode materials should be within approximate to 10 nm to overcome the sluggish ion diffusion in the bulk. In addition, capacitor-type cathode materials are required to possess high capacitance to match with LIB-type anodes. Meanwhile, pre-lithiation proves an effective strategy to achieve high cell voltages and high energy density accordingly. In this review we first summarize the requirement on electrode materials for LIHSs, and then propose two levels of LIHSs with the clarification of true LIHSs according to the energy and power density. Finally, we give an outlook for future LIHSs.
引用
收藏
页码:578 / 587
页数:10
相关论文
共 64 条
[1]   An asymmetric hybrid nonaqueous energy storage cell [J].
Amatucci, GG ;
Badway, F ;
Du Pasquier, A ;
Zheng, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A930-A939
[2]   Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
CHEMICAL REVIEWS, 2014, 114 (23) :11619-11635
[3]   Nonaqueous Lithium-Ion Capacitors with High Energy Densities using Trigol-Reduced Graphene Oxide Nanosheets as Cathode-Active Material [J].
Aravindan, Vanchiappan ;
Mhamane, Dattakumar ;
Ling, Wong Chui ;
Ogale, Satishchandra ;
Madhavi, Srinivasan .
CHEMSUSCHEM, 2013, 6 (12) :2240-2244
[4]   Unveiling the Fabrication of "Rocking-Chair" Type 3.2 and 1.2 V Class Cells Using Spinel LiNi0.5Mn1.5O4 as Cathode with Li4Ti5O12 [J].
Arun, Nagasubramanian ;
Aravindan, Vanchiappan ;
Jayaraman, Sundaramurthy ;
Madhavi, Srinivasan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (43) :24332-24336
[5]   Carbon-based nanostructured materials and their composites as supercapacitor electrodes [J].
Bose, Saswata ;
Kuila, Tapas ;
Mishra, Ananta Kumar ;
Rajasekar, R. ;
Kim, Nam Hoon ;
Lee, Joong Hee .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (03) :767-784
[6]   Ultrathin Nanowires - A Materials Chemistry Perspective [J].
Cademartiri, Ludovico ;
Ozin, Geoffrey A. .
ADVANCED MATERIALS, 2009, 21 (09) :1013-1020
[7]   Characterization of bi-material electrodes for electrochemical hybrid energy storage devices [J].
Cericola, D. ;
Ruch, P. W. ;
Koetz, R. ;
Novak, P. ;
Wokaun, A. .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (06) :812-815
[8]   Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of the different possible approaches utilizing activated carbon, Li4Ti5O12 and LiMn2O4 [J].
Cericola, Dario ;
Novak, Petr ;
Wokaun, Alexander ;
Koetz, Ruediger .
JOURNAL OF POWER SOURCES, 2011, 196 (23) :10305-10313
[9]   (LiFePO4-AC)/Li4Ti5O12 hybrid supercapacitor: The effect of LiFePO4 content on its performance [J].
Chen, Shuli ;
Hu, Huachong ;
Wang, Changqing ;
Wang, Guiling ;
Yin, Jinling ;
Cao, Dianxue .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2012, 4 (03)
[10]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548