Polyaniline electrospinning composite fibers for orthotopic photothermal treatment of tumors in vivo

被引:31
作者
Chen, Yinyin [1 ,2 ]
Li, Chunxia [1 ]
Hou, Zhiyao [1 ]
Huang, Shanshan [1 ]
Liu, Bei [1 ,2 ]
He, Fei [1 ,2 ]
Luo, Laoyong [3 ]
Lin, Jun [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Nucl Power Inst China, Chengdu 610000, Peoples R China
基金
中国国家自然科学基金;
关键词
NANOPARTICLES; NANOFIBERS; ABLATION; LASER;
D O I
10.1039/c5nj00327j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A nanocomposite fabricated by electrostatic spinning, which incorporated polyaniline nanoparticles into poly(epsilon-caprolactone) and gelatin (PG), was used to form nanofiber fabrics. Polyaniline nanoparticles have a strong optical absorption at near-infrared (NIR) wavelengths and can convert optical energy into thermal energy under 808 nm laser irradiation, allowing them to ablate tumor cells thermally. Pieces of the nanocomposite were surgically implanted into tumors in mice, and orthotopic photothermal therapy was performed. The experimental results in vivo suggested that polyaniline PG can inhibit tumor growth efficiently by converting optical energy into thermal energy to ablate tumor cells.
引用
收藏
页码:4987 / 4993
页数:7
相关论文
共 36 条
  • [1] Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering
    Ayaz, H. Goezde Senel
    Perets, Anat
    Ayaz, Hasan
    Gilroy, Kyle D.
    Govindaraj, Muthu
    Brookstein, David
    Lelkes, Peter I.
    [J]. BIOMATERIALS, 2014, 35 (30) : 8540 - 8552
  • [2] Controlling Surface Plasmon Optical Transmission with an Electrochemical Switch Using Conducting Polymer Thin Films
    Baba, Akira
    Tada, Kohji
    Janmanee, Rapiphun
    Sriwichai, Saengrawee
    Shinbo, Kazunari
    Kato, Keizo
    Kaneko, Futao
    Phanichphant, Sukon
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (20) : 4383 - 4388
  • [3] Nanomaterials: Applications in Cancer Imaging and Therapy
    Barreto, Jose A.
    O'Malley, William
    Kubeil, Manja
    Graham, Bim
    Stephan, Holger
    Spiccia, Leone
    [J]. ADVANCED MATERIALS, 2011, 23 (12) : H18 - H40
  • [4] Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology
    Bertrand, Nicolas
    Wu, Jun
    Xu, Xiaoyang
    Kamaly, Nazila
    Farokhzad, Omid C.
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2014, 66 : 2 - 25
  • [5] Multifunctional Core-Shell Structured Nanocarriers for Synchronous Tumor Diagnosis and Treatment In Vivo
    Chen, Yin-Yin
    Ma, Ping-An
    Yang, Dong-Mei
    Wu, Yuan
    Dai, Yun-Lu
    Li, Chun-Xia
    Lin, Jun
    [J]. CHEMISTRY-AN ASIAN JOURNAL, 2014, 9 (02) : 506 - 513
  • [6] Myotube assembly on nanofibrous and micropatterned polymers
    Huang, NF
    Patel, S
    Thakar, RG
    Wu, J
    Hsiao, BS
    Chu, B
    Lee, RJ
    Li, S
    [J]. NANO LETTERS, 2006, 6 (03) : 537 - 542
  • [7] Potential Oxidative Stress of Gold Nanoparticles by Induced-NO Releasing in Serum
    Jia, Hong Ying
    Liu, Yang
    Zhang, Xue Ji
    Han, Lu
    Du, Li Bo
    Tian, Qiu
    Xut, Yuan Chao
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (01) : 40 - +
  • [8] (Gold Nanorod Core)/(Polyaniline Shell) Plasmonic Switches with Large Plasmon Shifts and Modulation Depths
    Jiang, Nina
    Shao, Lei
    Wang, Jianfang
    [J]. ADVANCED MATERIALS, 2014, 26 (20) : 3282 - +
  • [9] Surface Engineering of Iron Oxide Nanoparticies for Targeted Cancer Therapy
    Kievit, Forrest M.
    Zhang, Miqin
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2011, 44 (10) : 853 - 862
  • [10] Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact
    Lal, Surbhi
    Clare, Susan E.
    Halas, Naomi J.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) : 1842 - 1851