Tuning the Electrochemical Reactivity of Boron- and Nitrogen-Substituted Graphene

被引:122
作者
Wu, Jingjie [1 ]
Rodrigues, Marco-Tulio F. [1 ]
Vajtai, Robert [1 ]
Ajayan, Pulickel M. [1 ]
机构
[1] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
关键词
OXYGEN REDUCTION REACTION; METAL-FREE ELECTROCATALYSTS; DOPED CARBON NANOTUBES; LITHIUM-ION BATTERIES; ANODE MATERIALS; ATOMIC LAYERS; SUPERCAPACITOR APPLICATIONS; NITRIDE NANOSHEETS; PERFORMANCE; CATALYSTS;
D O I
10.1002/adma.201506316
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The structural modification of nanomaterials at the atomic level has the potential to generate tailor-made components with enhanced performance for a variety of tasks. The chemical versatility of graphene has been constantly employed to fabricate multi-functional doped 2D materials with applications encompassing energy storage and electrocatalysis. Despite the many reports on boron-and nitrogen-doped graphenes, the possible synergy that arises from combining these electronically complementary elements has yet to be fully understood and explored. The techniques used for the fabrication of these nanomaterials are reviewed, along with the most recent reports on the benefits of B, N singly doping and co-doping in the electrocatalysis for oxygen reduction reactions and for energy storage in supercapacitors and lithium secondary batteries. The investigation of bulk co-doped materials has intrinsic limitations in fully understanding the real role of heteroatoms in the above applications. Ultimately, the design and creation of substituted monolayers with controlled compositions might hold the key for carbon-based energy-related applications.
引用
收藏
页码:6239 / 6246
页数:8
相关论文
共 68 条
[1]   Role of Graphitic Edge Plane Exposure in Carbon Nanostructures for Oxygen Reduction Reaction [J].
Biddinger, Elizabeth J. ;
Ozkan, Umit S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (36) :15306-15314
[2]   Main aging mechanisms in Li ion batteries [J].
Broussely, M ;
Biensan, P ;
Bonhomme, F ;
Blanchard, P ;
Herreyre, S ;
Nechev, K ;
Staniewicz, RJ .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :90-96
[3]   B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media [J].
Choi, Chang Hyuck ;
Chung, Min Wook ;
Kwon, Han Chang ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) :3694-3699
[4]   Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
ACS NANO, 2012, 6 (08) :7084-7091
[5]  
Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
[6]   Recent development of carbon materials for Li ion batteries [J].
Endo, M ;
Kim, C ;
Nishimura, K ;
Fujino, T ;
Miyashita, K .
CARBON, 2000, 38 (02) :183-197
[7]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[8]   Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction [J].
Gong, Yongji ;
Fei, Huilong ;
Zou, Xiaolong ;
Zhou, Wu ;
Yang, Shubin ;
Ye, Gonglan ;
Liu, Zheng ;
Peng, Zhiwei ;
Lou, Jun ;
Vajtai, Robert ;
Yakobson, Boris I. ;
Tour, James M. ;
Ajayan, Pulickel M. .
CHEMISTRY OF MATERIALS, 2015, 27 (04) :1181-1186
[9]   Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers [J].
Gong, Yongji ;
Shi, Gang ;
Zhang, Zhuhua ;
Zhou, Wu ;
Jung, Jeil ;
Gao, Weilu ;
Ma, Lulu ;
Yang, Yang ;
Yang, Shubin ;
You, Ge ;
Vajtai, Robert ;
Xu, Qianfan ;
MacDonald, Allan H. ;
Yakobson, Boris I. ;
Lou, Jun ;
Liu, Zheng ;
Ajayan, Pulickel M. .
NATURE COMMUNICATIONS, 2014, 5
[10]  
Greeley J, 2009, NAT CHEM, V1, P552, DOI [10.1038/nchem.367, 10.1038/NCHEM.367]