Novel technologies in doubled haploid line development

被引:116
作者
Ren, Jiaojiao [1 ,2 ]
Wu, Penghao [3 ]
Trampe, Benjamin [2 ]
Tian, Xiaolong [1 ]
Lubberstedt, Thomas [2 ]
Chen, Shaojiang [1 ]
机构
[1] China Agr Univ, Natl Maize Improvement Ctr China, Beijing, Peoples R China
[2] Iowa State Univ, Dept Agron, Ames, IA USA
[3] Xinjiang Agr Univ, Coll Agron, Urumqi, Peoples R China
基金
中国国家自然科学基金; 美国食品与农业研究所;
关键词
doubled haploid; haploidization; chromosome elimination; genome doubling; minichromosome; UNIPARENTAL CHROMOSOME ELIMINATION; CENTROMERE-SPECIFIC HISTONE; MARKER-ASSISTED SELECTION; IN-VIVO INDUCTION; SEGREGATION DISTORTION; MICRONUCLEUS FORMATION; MATERNAL HAPLOIDS; INDUCED MUTATION; MAIZE; PLANTS;
D O I
10.1111/pbi.12805
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
haploid inducer line can be transferred (DH) technology can not only shorten the breeding process but also increase genetic gain. Haploid induction and subsequent genome doubling are the two main steps required for DH technology. Haploids have been generated through the culture of immature male and female gametophytes, and through inter- and intraspecific via chromosome elimination. Here, we focus on haploidization via chromosome elimination, especially the recent advances in centromere-mediated haploidization. Once haploids have been induced, genome doubling is needed to produce DH lines. This study has proposed a new strategy to improve haploid genome doubling by combing haploids and minichromosome technology. With the progress in haploid induction and genome doubling methods, DH technology can facilitate reverse breeding, cytoplasmic male sterile (CMS) line production, gene stacking and a variety of other genetic analysis.
引用
收藏
页码:1361 / 1370
页数:10
相关论文
共 111 条
[1]   Fine mapping and chromosome walking towards the Ror1 locus in barley (Hordeum vulgare L.) [J].
Acevedo-Garcia, Johanna ;
Collins, Nicholas C. ;
Ahmadinejad, Nahal ;
Ma, Lu ;
Houben, Andreas ;
Bednarek, Pawel ;
Benjdia, Mariam ;
Freialdenhoven, Andreas ;
Altmueller, Janine ;
Nuernberg, Peter ;
Reinhardt, Richard ;
Schulze-Lefert, Paul ;
Panstruga, Ralph .
THEORETICAL AND APPLIED GENETICS, 2013, 126 (12) :2969-2982
[2]   Epigenetic regulation of centromeric chromatin: old dogs, new tricks? [J].
Allshire, Robin C. ;
Karpen, Gary H. .
NATURE REVIEWS GENETICS, 2008, 9 (12) :923-937
[3]   Oat-maize chromosome addition lines: A new system for mapping the maize genome [J].
Ananiev, EV ;
RieraLizarazu, O ;
Rines, HW ;
Phillips, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3524-3529
[4]   A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize [J].
Barret, P. ;
Brinkmann, M. ;
Beckert, M. .
THEORETICAL AND APPLIED GENETICS, 2008, 117 (04) :581-594
[5]  
BEAUMONT VH, 1993, PLANT CELL REP, V12, P648, DOI 10.1007/BF00232817
[6]   TIME RATE AND MECHANISM OF CHROMOSOME ELIMINATION IN HORDEUM HYBRIDS [J].
BENNETT, MD ;
FINCH, RA ;
BARCLAY, IR .
CHROMOSOMA, 1976, 54 (02) :175-200
[7]   Engineered minichromosomes in plants [J].
Birchler, James A. .
CURRENT OPINION IN PLANT BIOLOGY, 2014, 19 :76-80
[8]   Effect of parental genotypes on haploid embryo and plantlet formation in wheat x maize crosses [J].
Bitsch, C ;
Gröger, S ;
Lelley, T .
EUPHYTICA, 1998, 103 (03) :319-323
[9]   Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain [J].
Black, Ben E. ;
Jansen, Lars E. T. ;
Maddox, Paul S. ;
Foltz, Daniel R. ;
Desai, Arshad B. ;
Shah, Jagesh V. ;
Cleveland, Don W. .
MOLECULAR CELL, 2007, 25 (02) :309-322
[10]   Cenh3: An Emerging Player in Haploid Induction Technology [J].
Britt, Anne B. ;
Kuppu, Sundaram .
FRONTIERS IN PLANT SCIENCE, 2016, 7