Finite Sample Behavior of MLE in Network Autocorrelation Models

被引:2
作者
La Rocca, Michele [1 ]
Porzio, Giovanni C. [2 ]
Vitale, Maria Prosperina [1 ]
Doreian, Patrick [3 ,4 ]
机构
[1] Univ Salerno, Dept Econ & Stat, Fisciano, Italy
[2] Univ Cassino & Southern Lazio, Dept Econ & Law, Cassino, Italy
[3] Univ Ljubljana, Fac Social Sci, Ljubljana, Slovenia
[4] Univ Pittsburgh, Dept Sociol, Pittsburgh, PA USA
来源
CLASSIFICATION, (BIG) DATA ANALYSIS AND STATISTICAL LEARNING | 2018年
关键词
Network effect model; Density; Network topology; Non-normal distribution; SOCIAL-INFLUENCE; AUTO-CORRELATION; BIAS;
D O I
10.1007/978-3-319-55708-3_5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work evaluates the finite sample behavior of ML estimators in network autocorrelation models, a class of auto-regressive models studying the network effect on a variable of interest. Through an extensive simulation study, we examine the conditions under which these estimators are normally distributed in the case of finite samples. The ML estimators of the autocorrelation parameter have a negative bias and a strongly asymmetric sampling distribution, especially for high values of the network effect size and the network density. In contrast, the estimator of the intercept is positively biased but with an asymmetric sampling distribution. Estimators of the other regression parameters are unbiased, with heavy tails in presence of non-normal errors. This occurs not only in randomly generated networks but also in well-established network structures.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 50 条
  • [21] Orthogonal designs in linear models and sequences with zero autocorrelation
    Koukouvinos, C
    STATISTICS & PROBABILITY LETTERS, 1996, 26 (04) : 333 - 338
  • [22] Identifying Metric Types with Optimized DFT and Autocorrelation Models
    Chiu, Matt
    Yust, Jason
    MATHEMATICS AND COMPUTATION IN MUSIC (MCM 2022), 2022, : 343 - 348
  • [23] Wild bootstrap tests for autocorrelation in vector autoregressive models
    Ahlgren, Niklas
    Catani, Paul
    STATISTICAL PAPERS, 2017, 58 (04) : 1189 - 1216
  • [24] Spatio-temporal autocorrelation of road network data
    Cheng, Tao
    Haworth, James
    Wang, Jiaqiu
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2012, 14 (04) : 389 - 413
  • [25] A simulation study of finite-sample properties of marginal structural Cox proportional hazards models
    Westreich, Daniel
    Cole, Stephen R.
    Schisterman, Enrique F.
    Platt, Robert W.
    STATISTICS IN MEDICINE, 2012, 31 (19) : 2098 - 2109
  • [26] A perturbative solution to the linear influence/network autocorrelation model under network dynamics
    Butts, Carter T.
    JOURNAL OF MATHEMATICAL SOCIOLOGY, 2025,
  • [27] NETWORK AUTOCORRELATION MODELING: BAYESIAN TECHNIQUES FOR ESTIMATING AND TESTING MULTIPLE NETWORK AUTOCORRELATIONS
    Dittrich, Dino
    Leenders, Roger Th. A. J.
    Mulder, Joris
    SOCIOLOGICAL METHODOLOGY, VOL 50, 2020, 50 (01): : 168 - 214
  • [28] Linear home ranges: Effects of smoothing, sample size, and autocorrelation on kernel estimates
    Blundell, GM
    Maier, JAK
    Debevec, EM
    ECOLOGICAL MONOGRAPHS, 2001, 71 (03) : 469 - 489
  • [29] Third-order inference for autocorrelation in nonlinear regression models
    Nguimkeu, P. E.
    Rekkas, M.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (11) : 3413 - 3425
  • [30] A residual-based test for autocorrelation in quantile regression models
    Huo, Lijuan
    Kim, Tae-Hwan
    Kim, Yunmi
    Lee, Dong Jin
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (07) : 1305 - 1322