Nordhaus-Gaddum type inequalities for the distinguishing index

被引:1
作者
Pilsniak, Monika [1 ]
机构
[1] AGH Univ Sci & Technol, Dept Discrete Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
Symmetry breaking in graphs; distinguishing index; Nordhaus-Gaddum type bounds; CARTESIAN PRODUCTS; GRAPHS;
D O I
10.26493/1855-3974.2173.71a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The distinguishing index of a graph G, denoted by D '(G), is the least number of colours in an edge colouring of G not preserved by any nontrivial automorphism. This invariant is defined for any graph without K-2 as a connected component and without two isolated vertices, and such a graph is called admissible. We prove the Nordhaus-Gaddum type relation: 2 <= D '(G) + D '((G) over bar) <= Delta(G) + 2 for every admissible connected graph G of order |G| >= 7 such that G is also admissible.
引用
收藏
页码:223 / 231
页数:9
相关论文
共 12 条
[1]   A survey of Nordhaus-Gaddum type relations [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (4-5) :466-546
[2]   METHOD IN GRAPH THEORY [J].
BONDY, JA ;
CHVATAL, V .
DISCRETE MATHEMATICS, 1976, 15 (02) :111-135
[3]  
Collins KL, 2013, ELECTRON J COMB, V20
[4]   Distinguishing colorings of Cartesian products of complete graphs [J].
Fisher, Michael J. ;
Isaak, Garth .
DISCRETE MATHEMATICS, 2008, 308 (11) :2240-2246
[5]  
HEDETNIEMI S. M., 1981, Ars Combin., V11, P149
[6]   The distinguishing number of Cartesian products of complete graphs [J].
Imrich, Wilfried ;
Jerebic, Janja ;
Klavzar, Sandi .
EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) :922-929
[7]   The distinguishing index of connected graphs without pendant edges [J].
Imrich, Wilfried ;
Kalinowski, Rafal ;
Pilsniak, Monika ;
Wozniak, Mariusz .
ARS MATHEMATICA CONTEMPORANEA, 2020, 18 (01) :117-126
[8]   Distinguishing graphs by edge-colourings [J].
Kalinowski, Rafal ;
Pilsniak, Monika .
EUROPEAN JOURNAL OF COMBINATORICS, 2015, 45 :124-131
[9]  
Nordhaus E. A., 1956, Amer. Math. Monthly, V63, P175, DOI DOI 10.2307/2306658
[10]   Improving upper bounds for the distinguishing index [J].
Pilsniak, Monika .
ARS MATHEMATICA CONTEMPORANEA, 2017, 13 (02) :259-274