Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival

被引:320
作者
Nicolau, Monica [2 ]
Levine, Arnold J. [1 ]
Carlsson, Gunnar [2 ,3 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Ayasdi Inc, Palo Alto, CA 94301 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
applied topology; p53; systems biology; GENE-EXPRESSION; PREDICTOR; SIGNATURE; SUBTYPES;
D O I
10.1073/pnas.1102826108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-throughput biological data, whether generated as sequencing, transcriptional microarrays, proteomic, or other means, continues to require analytic methods that address its high dimensional aspects. Because the computational part of data analysis ultimately identifies shape characteristics in the organization of data sets, the mathematics of shape recognition in high dimensions continues to be a crucial part of data analysis. This article introduces a method that extracts information from high-throughput microarray data and, by using topology, provides greater depth of information than current analytic techniques. The method, termed Progression Analysis of Disease (PAD), first identifies robust aspects of cluster analysis, then goes deeper to find a multitude of biologically meaningful shape characteristics in these data. Additionally, because PAD incorporates a visualization tool, it provides a simple picture or graph that can be used to further explore these data. Although PAD can be applied to a wide range of high-throughput data types, it is used here as an example to analyze breast cancer transcriptional data. This identified a unique subgroup of Estrogen Receptor-positive (ER+) breast cancers that express high levels of c-MYB and low levels of innate inflammatory genes. These patients exhibit 100% survival and no metastasis. No supervised step beyond distinction between tumor and healthy patients was used to identify this subtype. The group has a clear and distinct, statistically significant molecular signature, it highlights coherent biology but is invisible to cluster methods, and does not fit into the accepted classification of Luminal A/B, Normal-like subtypes of ER+ breast cancers. We denote the group as c-MYB+ breast cancer.
引用
收藏
页码:7265 / 7270
页数:6
相关论文
共 14 条
[1]   Structural insight into RNA hairpin folding intermediates [J].
Bowman, Gregory R. ;
Huang, Xuhui ;
Yao, Yuan ;
Sun, Jian ;
Carlsson, Gunnar ;
Guibas, Leonidas J. ;
Pande, Vijay S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (30) :9676-+
[2]   TOPOLOGY AND DATA [J].
Carlsson, Gunnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) :255-308
[3]   Mitochondrial HEP27 Is a c-Myb Target Gene That Inhibits Mdm2 and Stabilizes p53 [J].
Deisenroth, Chad ;
Thorner, Aaron R. ;
Enomoto, Takeharu ;
Perou, Charles M. ;
Zhang, Yanping .
MOLECULAR AND CELLULAR BIOLOGY, 2010, 30 (16) :3981-3993
[4]   The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas [J].
Herschkowitz, Jason I. ;
He, Xiaping ;
Fan, Cheng ;
Perou, Charles M. .
BREAST CANCER RESEARCH, 2008, 10 (05)
[5]   TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer [J].
Langerod, Anita ;
Zhao, Hongjuan ;
Borgan, Ornulf ;
Nesland, Jahn M. ;
Bukholm, Ida Rk ;
Ikdahl, Tone ;
Karesen, Rolf ;
Borresen-Dale, Anne-Lise ;
Jeffrey, Stefanie S. .
BREAST CANCER RESEARCH, 2007, 9 (03)
[6]  
MULLNER D, 2011, PROGRESSION ANAL DIS
[7]   Disease-specific genomic analysis: identifying the signature of pathologic biology [J].
Nicolau, Monica ;
Tibshirani, Robert ;
Borresen-Dale, Anne-Lise ;
Jeffrey, Stefanie S. .
BIOINFORMATICS, 2007, 23 (08) :957-965
[8]   Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes [J].
Parker, Joel S. ;
Mullins, Michael ;
Cheang, Maggie C. U. ;
Leung, Samuel ;
Voduc, David ;
Vickery, Tammi ;
Davies, Sherri ;
Fauron, Christiane ;
He, Xiaping ;
Hu, Zhiyuan ;
Quackenbush, John F. ;
Stijleman, Inge J. ;
Palazzo, Juan ;
Marron, J. S. ;
Nobel, Andrew B. ;
Mardis, Elaine ;
Nielsen, Torsten O. ;
Ellis, Matthew J. ;
Perou, Charles M. ;
Bernard, Philip S. .
JOURNAL OF CLINICAL ONCOLOGY, 2009, 27 (08) :1160-1167
[9]   MYB function in normal and cancer cells [J].
Ramsay, Robert G. ;
Gonda, Thomas J. .
NATURE REVIEWS CANCER, 2008, 8 (07) :523-534
[10]  
Singh G., 2007, PBG© Eurographics, P91