On the virtual element method for topology optimization on polygonal meshes: A numerical study

被引:47
作者
Antonietti, P. F. [1 ]
Bruggi, M. [2 ]
Scacchi, S. [3 ]
Verani, M. [1 ]
机构
[1] Politecn Milan, MOX, Dipartimento Matemat, Milan, Italy
[2] Politecn Milan, Dipartimento Ingn Civile & Ambientale, Milan, Italy
[3] Univ Milan, Dipartimento Matemat, Milan, Italy
关键词
Virtual element method; Topology optimization; Linear elasticity; Stokes equations; 2ND-ORDER ELLIPTIC PROBLEMS; FINITE-ELEMENTS; STOKES PROBLEM; DISCRETIZATION; FORMULATION;
D O I
10.1016/j.camwa.2017.05.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that the solution of topology optimization problems may be affected both by the geometric properties of the computational mesh, which can steer the minimization process towards local (and non-physical) minima, and by the accuracy of the method employed to discretize the underlying differential problem, which may not be able to correctly capture the physics of the problem. In light of the above remarks, in this paper we consider polygonal meshes and employ the virtual element method (VEM) to solve two classes of paradigmatic topology optimization problems, one governed by nearly incompressible and compressible linear elasticity and the other by Stokes equations. Several numerical results show the virtues of our polygonal VEM based approach with respect to more standard methods. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1091 / 1109
页数:19
相关论文
共 54 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]  
Antonietti P., 2016, ARXIV161108736
[3]   A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES [J].
Antonietti, P. F. ;
Da Veiga, L. Beirao ;
Scacchi, S. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :34-56
[4]   A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES [J].
Antonietti, P. F. ;
da Veiga, L. Beirao ;
Mora, D. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) :386-404
[5]   Basic principles of hp virtual elements on quasiuniform meshes [J].
Beirao da Veiga, L. ;
Chernov, A. ;
Mascotto, L. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (08) :1567-1598
[6]   Recent techniques for PDE discretizations on polyhedral meshes [J].
Bellomo, N. ;
Brezzi, F. ;
Manzini, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (08) :1453-1455
[7]  
Bendse MP., 2003, Topology optimization: theory, methods, and applications, V2
[8]   Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems [J].
Benedetto, M. F. ;
Berrone, S. ;
Borio, A. ;
Pieraccini, S. ;
Scialo, S. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 311 :18-40
[9]   The virtual element method for discrete fracture network simulations [J].
Benedetto, Matias Fernando ;
Berrone, Stefano ;
Pieraccini, Sandra ;
Scialo, Stefano .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 280 :135-156
[10]   Topology optimization of fluids in Stokes flow [J].
Borrvall, T ;
Petersson, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 41 (01) :77-107