ON INTEGRALS OF EIGENFUNCTIONS OVER GEODESICS

被引:0
作者
Chen, Xuehua [1 ]
Sogge, Christopher D. [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
Eigenfunctions; negative curvature;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If (M, g) is a compact Riemannian surface, then the integrals of L-2(M)-normalized eigenfunctions e(j) over geodesic segments of fixed length are uniformly bounded. Also, if (M, g) has negative curvature and gamma(t) is a geodesic parameterized by arc length, the measures e(j)(gamma(t)) dt on R tend to zero in the sense of distributions as the eigenvalue lambda(j) -> , and so integrals of eigen-functions over periodic geodesics tend to zero as lambda(j) -> infinity. The assumption of negative curvature is necessary for the latter result.
引用
收藏
页码:151 / 161
页数:11
相关论文
共 50 条