ORBITAL DYNAMICS ON INVARIANT SETS OF CONTACT HAMILTONIAN SYSTEMS

被引:6
|
作者
Liu, Qihuai [1 ]
Torres, Pedro J. [2 ]
机构
[1] Guangxi Coll & Univ Key Lab Data Anal & Computat, Sch Math & Comp Sci, Guilin 541002, Peoples R China
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, Granada 18071, Spain
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年 / 27卷 / 10期
基金
中国国家自然科学基金;
关键词
Invariant set; periodic solution; contact Hamiltonian system; heteroclinic orbit; attraction;
D O I
10.3934/dcdsb.2021297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we shall give new insights on dynamics of contact Hamiltonian flows, which are gaining importance in several branches of physics as they model a dissipative behaviour. We divide the contact phase space into three parts, which are corresponding to three differential invariant sets Omega(+/-), Omega(0). On the invariant sets Omega(+/-), under some geometric conditions, the contact Hamiltonian system is equivalent to a Hamiltonian system via the Holder transformation. The invariant set Omega(0) may be composed of several equilibrium points and heteroclinic orbits connecting them, on which contact Hamiltonian system is conservative. Moreover, we have shown that, under general conditions, the zero energy level domain is a domain of attraction. In some cases, such a domain of attraction does not have nontrivial periodic orbits. Some interesting examples are presented.
引用
收藏
页码:5821 / 5844
页数:24
相关论文
共 50 条
  • [41] Invariant sets and inverse limits
    Ingram, WT
    TOPOLOGY AND ITS APPLICATIONS, 2002, 126 (03) : 393 - 408
  • [42] Computing invariant sets of discrete-time nonlinear systems via state immersion
    Wang, Zheming
    Jungers, Raphael M.
    Ong, Chong-Jin
    IFAC PAPERSONLINE, 2020, 53 (02): : 5505 - 5510
  • [43] Active Learning for Estimating Reachable Sets for Systems With Unknown Dynamics
    Chakrabarty, Ankush
    Danielson, Claus
    Di Cairano, Stefano
    Raghunathan, Arvind
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2531 - 2542
  • [44] An Interval Approach to Compute Invariant Sets
    Le Mezo, Thomas
    Jaulin, Luc
    Zerr, Benoit
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 4236 - 4242
  • [45] On the Almost Global Stability of Invariant Sets
    Karabacak, Ozkan
    Wisniewski, Rafael
    Leth, John
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 1648 - 1653
  • [46] ON MAXIMAL ROBUSTLY POSITIVELY INVARIANT SETS
    Hoai Nam Nguyen
    Olaru, Sorin
    Stoican, Florin
    ICINCO 2011: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2011, : 300 - 305
  • [47] LIPSCHITZIAN RETRACTS AND CURVES AS INVARIANT SETS
    Stacho, Laszlo L.
    Szabo, Laszlo I.
    PERIODICA MATHEMATICA HUNGARICA, 2008, 57 (01) : 23 - 30
  • [48] INVARIANT SETS IN THE DISCRETE GAME OF RETENTION
    Amirgalieva, S. N.
    Ostapenko, V. V.
    Tereshchenko, I. N.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2005, 41 (02) : 284 - 288
  • [49] Lipschitzian retracts and curves as invariant sets
    László L. Stachó
    László I. Szabó
    Periodica Mathematica Hungarica, 2008, 57 : 23 - 30
  • [50] BOUNDS FOR THE DOMAIN CONTAINING ALL COMPACT INVARIANT SETS OF THE SYSTEM MODELING DYNAMICS OF ACOUSTIC GRAVITY WAVES
    Starkov, Konstantin E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (10): : 3425 - 3432