ORBITAL DYNAMICS ON INVARIANT SETS OF CONTACT HAMILTONIAN SYSTEMS

被引:6
|
作者
Liu, Qihuai [1 ]
Torres, Pedro J. [2 ]
机构
[1] Guangxi Coll & Univ Key Lab Data Anal & Computat, Sch Math & Comp Sci, Guilin 541002, Peoples R China
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, Granada 18071, Spain
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年 / 27卷 / 10期
基金
中国国家自然科学基金;
关键词
Invariant set; periodic solution; contact Hamiltonian system; heteroclinic orbit; attraction;
D O I
10.3934/dcdsb.2021297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we shall give new insights on dynamics of contact Hamiltonian flows, which are gaining importance in several branches of physics as they model a dissipative behaviour. We divide the contact phase space into three parts, which are corresponding to three differential invariant sets Omega(+/-), Omega(0). On the invariant sets Omega(+/-), under some geometric conditions, the contact Hamiltonian system is equivalent to a Hamiltonian system via the Holder transformation. The invariant set Omega(0) may be composed of several equilibrium points and heteroclinic orbits connecting them, on which contact Hamiltonian system is conservative. Moreover, we have shown that, under general conditions, the zero energy level domain is a domain of attraction. In some cases, such a domain of attraction does not have nontrivial periodic orbits. Some interesting examples are presented.
引用
收藏
页码:5821 / 5844
页数:24
相关论文
共 50 条
  • [1] Invariant measures for contact Hamiltonian systems: symplectic sandwiches with contact bread
    Bravetti, A.
    de Leon, M.
    Marrero, J. C.
    Padron, E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (45)
  • [2] On the dynamics of contact Hamiltonian systems: I. Monotone systems
    Jin, Liang
    Yan, Jun
    NONLINEARITY, 2021, 34 (05) : 3314 - 3336
  • [3] LOCALIZING BOUNDS FOR COMPACT INVARIANT SETS OF NONLINEAR SYSTEMS POSSESSING FIRST INTEGRALS WITH APPLICATIONS TO HAMILTONIAN SYSTEMS
    Starkov, Konstantin E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (05): : 1477 - 1483
  • [4] Periodic Dynamics of a Class of Non-autonomous Contact Hamiltonian Systems
    Zhanyong Li
    Yaozong Tang
    A. Mina Sha Bier
    Jianguo Ye
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 663 - 676
  • [5] Periodic Dynamics of a Class of Non-autonomous Contact Hamiltonian Systems
    Li, Zhanyong
    Tang, Yaozong
    Bier, A. Mina Sha
    Ye, Jianguo
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (02) : 663 - 676
  • [6] Approximation dynamics and the stability of invariant sets
    Pliss, VA
    Sell, GR
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 149 (01) : 1 - 51
  • [7] A variational principle for contact Hamiltonian systems
    Wang, Ya-Nan
    Yan, Jun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (07) : 4047 - 4088
  • [8] SINGULAR REDUCTION OF CONTACT HAMILTONIAN SYSTEMS
    Xia, Qianqian
    REPORTS ON MATHEMATICAL PHYSICS, 2024, 93 (02) : 241 - 260
  • [9] Invariant Sets in Quasiperiodically Forced Dynamical Systems
    Susuki, Yoshihiko
    Mezic, Igor
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (01) : 329 - 351
  • [10] A note on invariant sets of iterated function systems
    L. L. Stachó
    L. I. Szabó
    Acta Mathematica Hungarica, 2008, 119 : 159 - 164