Characterizing rigid simplicial actions on trees

被引:0
作者
Levitt, G [1 ]
机构
[1] Univ Caen, LMNO, CNRS, UMR 6139, F-14032 Caen, France
来源
Geometric Methods in Group Theory | 2005年 / 372卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend Forester's rigidity theorem so as to give a complete characterization of rigid group actions on trees (an action is rigid if it is the only reduced action in its deformation space; in particular it is invariant under automorphisms preserving the set of elliptic subgroups).
引用
收藏
页码:27 / 33
页数:7
相关论文
共 10 条
[1]   Cut points and canonical splittings of hyperbolic groups [J].
Bowditch, BH .
ACTA MATHEMATICA, 1998, 180 (02) :145-186
[2]   On uniqueness of JS']JSJ decompositions of finitely generated groups [J].
Forester, M .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :740-751
[3]  
FORESTER M, SPLITTINGS GEN BAUMS
[4]   Deformation and rigidity of simplicial group actions on trees [J].
Forester, Max .
GEOMETRY & TOPOLOGY, 2002, 6 :219-267
[5]   Tree actions of automorphism groups [J].
Gilbert, ND ;
Howie, J ;
Metaftsis, V ;
Raptis, E .
JOURNAL OF GROUP THEORY, 2000, 3 (02) :213-223
[6]   A very short proof of Forester's rigidity result [J].
Guirardel, V .
GEOMETRY & TOPOLOGY, 2003, 7 :321-328
[7]  
GUIRARDEL V, IN PRESS
[8]  
LEVITT G, AUTOMORPHISMS HYPERH
[9]  
LEVITT G, IN PRESS AUTOMORPHIS
[10]   The large scale geometry of the higher Baumslag-Solitar groups [J].
Whyte, K .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (06) :1327-1343