On the area and perimeter of a random convex hull in a bounded convex set

被引:19
作者
Braker, H [1 ]
Hsing, T
机构
[1] Univ Bern, Dept Stat, CH-3012 Bern, Switzerland
[2] Natl Univ Singapore, Dept Stat, Singapore 119260, Singapore
关键词
Mathematics Subject Classification (1991): 60D05; 60F05;
D O I
10.1007/s004400050176
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose K is a compact convex set in IR2 and X-i, 1 less than or equal to i less than or equal to n, is a random sample of points in the interior of K. Under general assumptions on K and the distribution of the X-i we study the asymptotic properties of certain statistics of the convex hull of the sample.
引用
收藏
页码:517 / 550
页数:34
相关论文
共 12 条
[1]  
BRAKER H, 1995, IN PRESS ADV APPL PR
[2]   ON LIMITING LAWS FOR THE CONVEX-HULL OF A SAMPLE [J].
BROZIUS, H ;
DEHAAN, L .
JOURNAL OF APPLIED PROBABILITY, 1987, 24 (04) :852-862
[3]   THE STOCHASTIC-APPROXIMATION OF CONVEX POLYGONS [J].
BUCHTA, C .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 67 (03) :283-304
[4]   LIMIT-THEOREMS FOR FUNCTIONALS OF CONVEX HULLS [J].
CABO, AJ ;
GROENEBOOM, P .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (01) :31-55
[5]  
EFRON B, 1965, BIOMETRIKA, V52, P331, DOI 10.2307/2333687
[6]   LIMIT-THEOREMS FOR CONVEX HULLS [J].
GROENEBOOM, P .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (03) :327-368
[7]   ON THE ASYMPTOTIC DISTRIBUTION OF THE AREA OUTSIDE A RANDOM CONVEX HULL IN A DISK [J].
Hsing, Tailen .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (02) :478-493
[8]  
Kallenberg O., 1983, RANDOM MEASURES, DOI 10.1515/9783112525609
[9]  
Klingenberg W, 1978, COURSE DIFFERENTIAL
[10]  
RENYI A, 1964, Z WAHRSCHEIN, V3, P138