Mitochondrial DNA copy number and heteroplasmy load correlate with skeletal muscle oxidative capacity by P31 MR spectroscopy

被引:10
|
作者
Tian, Qu [1 ]
Moore, Ann Zenobia [1 ]
Oppong, Richard [1 ]
Ding, Jun [1 ]
Zampino, Marta [1 ]
Fishbein, Kenneth W. [2 ]
Spencer, Richard G. [2 ]
Ferrucci, Luigi [1 ]
机构
[1] NIA, Translat Gerontol Branch, 251 Bayview Blvd,Suite 100,RM04B316, Baltimore, MD 21224 USA
[2] NIA, Lab Clin Investigat, Baltimore, MD 21224 USA
关键词
aging; mitochondrial DNA; skeletal muscle;
D O I
10.1111/acel.13487
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The association between blood-based estimates of mitochondrial DNA parameters, mitochondrial DNA copy number (mtDNA-CN) and heteroplasmy load, with skeletal muscle bioenergetic capacity was evaluated in 230 participants of the Baltimore Longitudinal Study of Aging (mean age:74.7 years, 53% women). Participants in the study sample had concurrent data on muscle oxidative capacity (tau(PCr)) assessed by P-31 magnetic resonance spectroscopy, and mitochondrial DNA parameters estimated from whole-genome sequencing data. In multivariable linear regression models, adjusted for age, sex, extent of phosphocreatine (PCr) depletion, autosomal sequencing coverage, white blood cell total, and differential count, as well as platelet count, mtDNA-CN and heteroplasmy load were not significantly associated with tau(PCr) (both p > 0.05). However, in models evaluating whether the association between mtDNA-CN and tau(PCr) varied by heteroplasmy load, there was a significant interaction between mtDNA-CN and heteroplasmy load (p = 0.037). In stratified analysis, higher mtDNA-CN was significantly associated with lower tau(PCr) among participants with high heteroplasmy load (n = 84, beta (SE) = -0.236 (0.115), p-value = 0.044), but not in those with low heteroplasmy load (n = 146, beta (SE) = 0.046 (0.119), p-value = 0.702). Taken together, mtDNA-CN and heteroplasmy load provide information on muscle bioenergetics. Thus, mitochondrial DNA parameters may be considered proxy measures of mitochondrial function that can be used in large epidemiological studies, especially when comparing subgroups.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Measurement of Human Skeletal Muscle Oxidative Capacity by 31P-MR Spectroscopy: A Cross-Validation With In Vitro Measurements
    Lanza, Ian R.
    Bhagra, Sumit
    Nair, K. Sreekumaran
    Port, John D.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2011, 34 (05) : 1143 - 1150
  • [2] Unravelling the genetic basis for skeletal muscle mitochondrial DNA copy number variations in pigs
    Jiawen Yang
    Leilei Cui
    Yifeng Zhang
    Ziqi Ling
    Zhou Zhang
    Yizhong Huang
    Junwu Ma
    Shijun Xiao
    Bin Yang
    Lusheng Huang
    Science China(Life Sciences), 2024, 67 (01) : 211 - 214
  • [3] Unravelling the genetic basis for skeletal muscle mitochondrial DNA copy number variations in pigs
    Jiawen Yang
    Leilei Cui
    Yifeng Zhang
    Ziqi Ling
    Zhou Zhang
    Yizhong Huang
    Junwu Ma
    Shijun Xiao
    Bin Yang
    Lusheng Huang
    Science China Life Sciences, 2024, 67 : 211 - 214
  • [4] Unravelling the genetic basis for skeletal muscle mitochondrial DNA copy number variations in pigs
    Yang, Jiawen
    Cui, Leilei
    Zhang, Yifeng
    Ling, Ziqi
    Zhang, Zhou
    Huang, Yizhong
    Ma, Junwu
    Xiao, Shijun
    Yang, Bin
    Huang, Lusheng
    SCIENCE CHINA-LIFE SCIENCES, 2024, 67 (01) : 211 - 214
  • [5] P-31-MR SPECTROSCOPY OF SKELETAL-MUSCLE IN A LYMPHEDEMATOUS ARM
    KIRICUTA, IC
    BLUMM, R
    KRAWZAK, HW
    BEYER, HK
    LYMPHOLOGY, 1989, 22 (02) : 93 - 96
  • [6] Skeletal muscle oxidative capacity in children: a 31P-MRS study
    Ratel, S.
    Tonson, A.
    Le Fur, Y.
    Cozzone, P.
    Bendahau, D.
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2009, 23 : 80 - 80
  • [7] Peripheral artery disease, calf skeletal muscle mitochondrial DNA copy number, and functional performance
    McDermott, Mary M.
    Peterson, Charlotte A.
    Sufit, Robert
    Ferrucci, Luigi
    Guralnik, Jack M.
    Kibbe, Melina R.
    Polonsky, Tamar S.
    Tian, Lu
    Criqui, Michael H.
    Zhao, Lihui
    Stein, James H.
    Li, Lingyu
    Leeuwenburgh, Christiaan
    VASCULAR MEDICINE, 2018, 23 (04) : 340 - 348
  • [8] Accurate Measurement of Mitochondrial DNA Deletion Level and Copy Number Differences in Human Skeletal Muscle
    Grady, John P.
    Murphy, Julie L.
    Blakely, Emma L.
    Haller, Ronald G.
    Taylor, Robert W.
    Turnbull, Doug M.
    Tuppen, Helen A. L.
    PLOS ONE, 2014, 9 (12):
  • [9] Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle
    Kumar, Vidhya
    Chang, Henry
    Reiter, David A.
    Bradley, David P.
    Belury, Martha
    McCormack, Shana E.
    Raman, Subha V.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (119):
  • [10] Proliferation of mitochondria in chronically stimulated rabbit skeletal muscle - Transcription of mitochondrial genes and copy number of mitochondrial DNA
    Schultz, J
    Wiesner, RJ
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2000, 32 (06) : 627 - 634