Lyapunov inequality for elliptic equations involving limiting nonlinearities

被引:6
作者
Timoshin, Sergey A. [1 ,2 ]
机构
[1] POSTECH, Dept Math, Pohang 790784, Kyungbuk, South Korea
[2] POSTECH, PMT, Pohang 790784, Kyungbuk, South Korea
关键词
Elliptic equations; critical exponents; Lyapunov inequality; CRITICAL SOBOLEV EXPONENTS; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS;
D O I
10.3792/pjaa.86.139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note deals with a generalization of the famous Lyapunov inequality giving a necessary condition for the existence of solutions to a boundary value problem for an ordinary differential equation. The problem we consider is closely related to a well-known problem on an asymptotic behavior of positive solutions of a class of semilinear elliptic equations of nearly critical Sobolev growth.
引用
收藏
页码:139 / 142
页数:4
相关论文
共 16 条
[1]  
[Anonymous], 1990, Variational Methods: Applications to Non-linear Partial Differential Equations and Hamiltonian Systems
[2]   ELLIPTIC-EQUATIONS WITH NEARLY CRITICAL GROWTH [J].
ATKINSON, FV ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 70 (03) :349-365
[3]  
Brezis H., PARTIAL DIFFERENTIAL, VI, P149
[4]  
Byeon J., GEN LYAPUNOV INEQUAL
[5]   Lyapunov inequalities for partial differential equations [J].
Cañada, A. ;
Montero, J. A. ;
Villegas, S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 237 (01) :176-193
[6]  
Cañada A, 2005, MATH INEQUAL APPL, V8, P459
[7]   Multiplicity of positive solutions for semilinear elliptic equations involving the critical Sobolev exponents [J].
Cao, DM ;
Zhong, X .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (04) :461-483
[9]  
HAN ZC, 1991, ANN I H POINCARE-AN, V8, P159
[10]  
Lions P.-L., 1985, Rev. Mat. Iberoamericana, V1, P45