On Berry-Esseen bounds of summability transforms

被引:2
|
作者
Fridy, JA [1 ]
Goonatilake, RA
Khan, MK
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Texas A&M Int Univ, Dept Math, Laredo, TX 78041 USA
关键词
approximation operators; central limit theorem; convolution methods; Schnabl operators;
D O I
10.1090/S0002-9939-03-06987-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Y-n,Y-k, k = 0, 1, 2, ..., n greater than or equal to 1, be a collection of random variables, where for each n, Y-n,Y-k, k = 0, 1, 2,..., are independent. Let A = [p(n, k)] be a regular summability method. We provide some rates of convergence (Berry-Esseen type bounds) for the weak convergence of summability transform (AY). We show that when A = [p(n,k)] is the classical Cesaro summability method, the rate of convergence of the resulting central limit theorem is best possible among all regular triangular summability methods with rows adding up to one. We further provide some summability results concerning l(2)-negligibility. An application of these results characterizes the rate of convergence of Schnabl operators while approximating Lipschitz continuous functions.
引用
收藏
页码:273 / 282
页数:10
相关论文
共 50 条
  • [1] Berry-Esseen bounds in the local limit theorems
    Bobkov, Sergey G.
    Goetze, Friedrich
    LITHUANIAN MATHEMATICAL JOURNAL, 2025, 65 (01) : 50 - 66
  • [2] Berry-Esseen bounds for econometric time series
    Hormann, Siegfried
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2009, 6 : 377 - 397
  • [3] Berry-Esseen bounds for typical weighted sums
    Bobkov, S. G.
    Chistyakov, G. P.
    Goetze, F.
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [4] Anticoncentration and Berry-Esseen bounds for random tensors
    Dodos, Pandelis
    Tyros, Konstantinos
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 187 (1-2) : 317 - 384
  • [5] Berry-Esseen bounds in the entropic central limit theorem
    Bobkov, Sergey G.
    Chistyakov, Gennadiy P.
    Goetze, Friedrich
    PROBABILITY THEORY AND RELATED FIELDS, 2014, 159 (3-4) : 435 - 478
  • [6] Berry-Esseen bounds for functionals of independent random variables
    Privault, Nicolas
    Serafin, Grzegorz
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [7] Berry-esseen bounds for von mises and U-statistics
    Alberink I.B.
    Bentkus V.
    Lithuanian Mathematical Journal, 2001, 41 (1) : 1 - 16
  • [8] Asymptotic distributions and Berry-Esseen bounds for sums of record values
    Shao, QM
    Su, C
    Wei, G
    ELECTRONIC JOURNAL OF PROBABILITY, 2004, 9 : 544 - 559
  • [9] Berry-Esseen bounds for random projections of lpn-balls
    Johnston, Samuel
    Prochno, Joscha
    STUDIA MATHEMATICA, 2022, : 291 - 322
  • [10] Berry-Esseen bounds for parameter estimation of general Gaussian processes
    Douissi, Soukaina
    Es-Sebaiy, Khalifa
    Viens, Frederi G.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (01): : 633 - 664