HODGE STRUCTURES OF THE MODULI SPACES OF PAIRS

被引:3
作者
Munoz, Vicente [1 ]
机构
[1] Univ Complutense Madrid, Fac Matemat, E-28040 Madrid, Spain
关键词
Moduli space; complex curve; holomorphic bundle; Hodge structure; POLYNOMIALS; TRIPLES; BUNDLES;
D O I
10.1142/S0129167X10006604
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a smooth projective curve of genus g >= 2 over C. Fix n >= 2, d epsilon Z. A pair (E, phi) over X consists of an algebraic vector bundle E of rank n and degree d over X and a section phi epsilon H(0)(E). There is a concept of stability for pairs which depends on a real parameter tau. Let M(T) (n, d) be the moduli space of tau-semistable pairs of rank n and degree d over X. Here we prove that the cohomology groups of M(T) (n, d) are Hodge structures isomorphic to direct summands of tensor products of the Hodge structure H(1)(X). This implies a similar result for the moduli spaces of stable vector bundles over X.
引用
收藏
页码:1505 / 1529
页数:25
相关论文
共 16 条
  • [1] [Anonymous], PUBL MATH IHES
  • [2] THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES
    ATIYAH, MF
    BOTT, R
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505): : 523 - 615
  • [3] [Anonymous], 1974, I HAUTES ETUDES SCI
  • [4] Coniveau and the Grothendieck group of varieties
    Arapura, Donu
    Kang, Su-Jeong
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2006, 54 (03) : 611 - 622
  • [5] Bertram A., 1994, J ALG GEOMETRY, V3, P703
  • [6] Bradlow S. B., 1991, INT J MATH, V2, P477, DOI DOI 10.1142/S0129167X91000272.(1696)
  • [7] Stable triples, equivariant bundles and dimensional reduction
    Bradlow, SB
    GarciaPrada, O
    [J]. MATHEMATISCHE ANNALEN, 1996, 304 (02) : 225 - 252
  • [8] Moduli spaces of holomorphic triples over compact Riemann surfaces
    Bradlow, SB
    García-Prada, O
    Gothen, PB
    [J]. MATHEMATISCHE ANNALEN, 2004, 328 (1-2) : 299 - 351
  • [9] Deligne P., 1970, Proc. I.C.M. 1970, V1, P425
  • [10] Garcia-Prada O., 1994, Internat. J. Math., V5, P1