Accelerating convergence of a globalized sequential quadratic programming method to critical Lagrange multipliers

被引:5
作者
Izmailov, A. F. [1 ]
机构
[1] Lomonosov Moscow State Univ MSU, VMK Fac, OR Dept, Uchebniy Korpus 2, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Equality-constrained optimization; Lagrange optimality system; Critical Lagrange multiplier; 2-regularity; Newton-type methods; Sequential quadratic programming; Linesearch globalization of convergence; Merit function; Nonsmooth exact penalty function; True Hessian; Unit stepsize; extrapolation; NONLINEAR EQUATIONS;
D O I
10.1007/s10589-021-00317-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper concerns the issue of asymptotic acceptance of the true Hessian and the full step by the sequential quadratic programming algorithm for equality-constrained optimization problems. In order to enforce global convergence, the algorithm is equipped with a standard Armijo linesearch procedure for a nonsmooth exact penalty function. The specificity of considerations here is that the standard assumptions for local superlinear convergence of the method may be violated. The analysis focuses on the case when there exist critical Lagrange multipliers, and does not require regularity assumptions on the constraints or satisfaction of second-order sufficient optimality conditions. The results provide a basis for application of known acceleration techniques, such as extrapolation, and allow the formulation of algorithms that can outperform the standard SQP with BFGS approximations of the Hessian on problems with degenerate constraints. This claim is confirmed by some numerical experiments.
引用
收藏
页码:943 / 978
页数:36
相关论文
共 19 条
[1]  
Bonnans JF., 2006, Numerical optimization: theoretical and practical aspects
[2]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[3]   Unit stepsize for the Newton method close to critical solutions [J].
Fischer, A. ;
Izmailov, A. F. ;
Solodov, M., V .
MATHEMATICAL PROGRAMMING, 2021, 187 (1-2) :697-721
[4]   ADJUSTING DUAL ITERATES IN THE PRESENCE OF CRITICAL LAGRANGE MULTIPLIERS [J].
Fischer, Andreas ;
Izmailov, Alexey F. ;
Scheck, Wladimir .
SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (02) :1555-1581
[5]   ON SOLVING NONLINEAR EQUATIONS WITH SIMPLE SINGULARITIES OR NEARLY SINGULAR SOLUTIONS [J].
GRIEWANK, A .
SIAM REVIEW, 1985, 27 (04) :537-563
[6]  
Griewank A., 1980, Analysis and modification of Newton's method at singularities
[7]   STARLIKE DOMAINS OF CONVERGENCE FOR NEWTON METHOD AT SINGULARITIES [J].
GRIEWANK, AO .
NUMERISCHE MATHEMATIK, 1980, 35 (01) :95-111
[8]   Critical solutions of nonlinear equations: stability issues [J].
Izmailov, A. F. ;
Kurennoy, A. S. ;
Solodov, M. V. .
MATHEMATICAL PROGRAMMING, 2018, 168 (1-2) :475-507
[9]   Critical solutions of nonlinear equations: local attraction for Newton-type methods [J].
Izmailov, A. F. ;
Kurennoy, A. S. ;
Solodov, M. V. .
MATHEMATICAL PROGRAMMING, 2018, 167 (02) :355-379
[10]   Some new facts about sequential quadratic programming methods employing second derivatives [J].
Izmailov, A. F. ;
Solodov, M. V. .
OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (06) :1111-1131