Evolutionary approaches to minimizing network coding resources

被引:30
作者
Kim, Minkyu [1 ]
Medard, Muriel [1 ]
Aggarwal, Varun [2 ]
O'Reilly, Una-May [2 ]
Kim, Wonsik [1 ]
Ahn, Chang Wook [3 ]
Effros, Michelle [4 ]
机构
[1] MIT, Informat & Decis Syst Lab, Cambridge, MA 02139 USA
[2] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[3] Gwangju Inst Sci & Technol, Dept Informat & Commun, Gwangju 500712, South Korea
[4] CALTECH, Data Compress Lab, Pasadena, CA 91125 USA
来源
INFOCOM 2007, VOLS 1-5 | 2007年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/INFCOM.2007.231
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We wish to minimize the resources used for network coding while achieving the desired throughput in a multicast scenario. We employ evolutionary approaches, based on a genetic algorithm, that avoid the computational complexity that makes the problem NP-hard. Our experiments show great improvements over the sub-optimal solutions of prior methods. Our new algorithms improve over our previously proposed algorithm in three ways. First, whereas the previous algorithm can be applied only to acyclic networks, our new method works also with networks with cycles. Second, we enrich the set of components used in the genetic algorithm, which improves the performance. Third, we develop a novel distributed framework. Combining distributed random network coding with our distributed optimization yields a network coding protocol where the resources used for coding are optimized in the setup phase by running our evolutionary algorithm at each node of the network. We demonstrate the effectiveness of our approach by carrying out simulations on a number of different sets of network topologies.
引用
收藏
页码:1991 / +
页数:2
相关论文
共 22 条
[1]   Network information flow [J].
Ahlswede, R ;
Cai, N ;
Li, SYR ;
Yeung, RW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1204-1216
[2]  
Ahuja RK, 1993, NETWORK FLOWS THEORY
[3]  
[Anonymous], P NETCOD
[4]  
Bhattad K, 2005, 2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, P1730
[5]   Efficient optimization of all-terminal reliable networks, using an evolutionary approach [J].
Dengiz, B ;
Altiparmak, F ;
Smith, AE .
IEEE TRANSACTIONS ON RELIABILITY, 1997, 46 (01) :18-26
[6]   Topological design of local-area networks using genetic algorithms [J].
Elbaum, R ;
Sidi, M .
IEEE-ACM TRANSACTIONS ON NETWORKING, 1996, 4 (05) :766-778
[7]  
EREZ E, 2005, P ISIT
[8]   Information flow decomposition for network coding [J].
Fragouli, C ;
Soijanin, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (03) :829-848
[9]   The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations [J].
Harik, George ;
Cantu-Paz, Erick ;
Goldberg, David E. ;
Miller, Brad L. .
EVOLUTIONARY COMPUTATION, 1999, 7 (03) :231-253
[10]  
HO T, 2003, P ANN ALL C COMM CON