GHOST-FREE HDR IMAGING VIA UNROLLING LOW-RANK MATRIX COMPLETION

被引:5
作者
Truong Thanh Nhat Mai [1 ]
Lam, Edmund Y. [2 ]
Lee, Chul [1 ]
机构
[1] Dongguk Univ, Dept Multimedia Engn, Seoul, South Korea
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
基金
新加坡国家研究基金会;
关键词
High dynamic range imaging; unrolled optimization; low-rank matrix completion;
D O I
10.1109/ICIP42928.2021.9506201
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a ghost-free high dynamic range (HDR) image synthesis algorithm by unrolling low-rank matrix completion. By exploiting the low-rank structure of the irradiance maps from low dynamic range (LDR) images, we formulate ghost-free HDR imaging as a general low-rank matrix completion problem. Then, we solve the problem iteratively using the augmented Lagrange multiplier (ALM) method. At each iteration, the optimization variables are updated by closed-form solutions and the regularizers are updated by learned deep neural networks. Experimental results show that the proposed algorithm provides better image qualities with fewer visual artifacts compared to state-of-the-art algorithms.
引用
收藏
页码:2928 / 2932
页数:5
相关论文
共 25 条
[1]  
Aydin T. O., 2008, P HUMAN VISION ELECT, V6806, P109
[2]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[3]   Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration [J].
Chen, Yunjin ;
Pock, Thomas .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) :1256-1272
[4]   Creating cinematic wide gamut HDR-video for the evaluation of tone mapping operators and HDR-displays [J].
Froehlich, Jan ;
Grandinetti, Stefan ;
Eberhardt, Bernd ;
Walter, Simon ;
Schilling, Andreas ;
Brendel, Harald .
DIGITAL PHOTOGRAPHY X, 2014, 9023
[5]   Simultaneous HDR and Optic Flow Computation [J].
Hafner, David ;
Demetz, Oliver ;
Weickert, Joachim .
2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, :2065-2070
[6]   FIXED-POINT CONTINUATION FOR l1-MINIMIZATION: METHODOLOGY AND CONVERGENCE [J].
Hale, Elaine T. ;
Yin, Wotao ;
Zhang, Yin .
SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (03) :1107-1130
[7]  
Heo Y. S., 2010, ACCV, P486
[8]   Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization [J].
Hu, Yao ;
Zhang, Debing ;
Ye, Jieping ;
Li, Xuelong ;
He, Xiaofei .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (09) :2117-2130
[9]  
Kalantari N. K., 2017, ACM T GRAPH, V36
[10]   Learning Not to Learn: Training Deep Neural Networks with Biased Data [J].
Kim, Byungju ;
Kim, Hyunwoo ;
Kim, Kyungsu ;
Kim, Sungjin ;
Kim, Junmo .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9004-9012