Analysis, Simulation and Prediction of Multivariate Random Fields with Package Random Fields

被引:0
作者
Schlather, Martin [1 ]
Malinowski, Alexander [1 ]
Menck, Peter J. [2 ]
Oesting, Marco [3 ]
Strokorb, Kirstin [1 ]
机构
[1] Univ Mannheim, Mannheim, Germany
[2] Potsdam Inst Climate Impact Res, Potsdam, Germany
[3] INRA, AgroParisTech, Paris, France
来源
JOURNAL OF STATISTICAL SOFTWARE | 2015年 / 63卷 / 08期
关键词
multivariate geostatistics; bivariate Matern model; linear model of coregionalization; matrix-valued covariance function; multivariate random field; R; vector-valued field; CROSS-COVARIANCE FUNCTIONS; R PACKAGE; MODELS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modeling of and inference on multivariate data that have been measured in space, such as temperature and pressure, are challenging tasks in environmental sciences, physics and materials science. We give an overview over and some background on modeling with cross-covariance models. The R package RandomFields supports the simulation, the parameter estimation and the prediction in particular for the linear model of coregionalization, the multivariate Matern models, the delay model, and a spectrum of physically motivated vector valued models. An example on weather data is considered, illustrating the use of RandomFields for parameter estimation and prediction.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [41] A turning bands program for conditional co-simulation of cross-correlated Gaussian random fields
    Emery, Xavier
    COMPUTERS & GEOSCIENCES, 2008, 34 (12) : 1850 - 1862
  • [42] Transient landing dynamics analysis for a lunar lander with random and interval fields
    Chen, Zhao-Yue
    Imholz, Maurice
    Li, Liu
    Faes, Matthias
    Moens, David
    APPLIED MATHEMATICAL MODELLING, 2020, 88 (88) : 827 - 851
  • [43] Fractional elliptic, hyperbolic and parabolic random fields
    Leonenko, N. N.
    Ruiz-Medina, M. D.
    Taqqu, M. S.
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 1134 - 1172
  • [44] Approximate reference priors for Gaussian random fields
    De Oliveira, Victor
    Han, Zifei
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (01) : 296 - 326
  • [45] Nonstationary Spatial Gaussian Markov Random Fields
    Yue, Yu
    Speckman, Paul L.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (01) : 96 - 116
  • [46] Convolutional neural random fields for action recognition
    Liu, Caihua
    Liu, Jie
    He, Zhicheng
    Zhai, Yujia
    Hu, Qinghua
    Huang, Yalou
    PATTERN RECOGNITION, 2016, 59 : 213 - 224
  • [47] Local Whittle estimator for anisotropic random fields
    Guo, Hongwen
    Lim, Chae Young
    Meerschaert, Mark M.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (05) : 993 - 1028
  • [48] Stationary and Isotropic Vector Random Fields on Spheres
    Ma, Chunsheng
    MATHEMATICAL GEOSCIENCES, 2012, 44 (06) : 765 - 778
  • [49] Comparing connected structures in ensemble of random fields
    Rongier, Guillaume
    Collon, Pauline
    Renard, Philippe
    Straubhaar, Julien
    Sausse, Judith
    ADVANCES IN WATER RESOURCES, 2016, 96 : 145 - 169
  • [50] Simulation of heterogeneous two-phase media using random fields and level sets
    Stefanou, George
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2015, 9 (02) : 114 - 120