Analysis, Simulation and Prediction of Multivariate Random Fields with Package Random Fields

被引:0
作者
Schlather, Martin [1 ]
Malinowski, Alexander [1 ]
Menck, Peter J. [2 ]
Oesting, Marco [3 ]
Strokorb, Kirstin [1 ]
机构
[1] Univ Mannheim, Mannheim, Germany
[2] Potsdam Inst Climate Impact Res, Potsdam, Germany
[3] INRA, AgroParisTech, Paris, France
来源
JOURNAL OF STATISTICAL SOFTWARE | 2015年 / 63卷 / 08期
关键词
multivariate geostatistics; bivariate Matern model; linear model of coregionalization; matrix-valued covariance function; multivariate random field; R; vector-valued field; CROSS-COVARIANCE FUNCTIONS; R PACKAGE; MODELS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modeling of and inference on multivariate data that have been measured in space, such as temperature and pressure, are challenging tasks in environmental sciences, physics and materials science. We give an overview over and some background on modeling with cross-covariance models. The R package RandomFields supports the simulation, the parameter estimation and the prediction in particular for the linear model of coregionalization, the multivariate Matern models, the delay model, and a spectrum of physically motivated vector valued models. An example on weather data is considered, illustrating the use of RandomFields for parameter estimation and prediction.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [31] GAUSSIAN RANDOM FIELDS: WITH AND WITHOUT COVARIANCES
    Bingham, N. H.
    Symons, Tasmin L.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 106 : 27 - 40
  • [32] VARIATIONAL INFERENCE FOR CONDITIONAL RANDOM FIELDS
    Liao, Chih-Pin
    Chien, Jen-Tzung
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2002 - 2005
  • [33] Nonstationary cross-covariance functions for multivariate spatio-temporal random fields
    Salvana, Mary Lai O.
    Genton, Marc G.
    SPATIAL STATISTICS, 2020, 37
  • [34] On the construction of stationary processes and random fields
    Lee, Jeonghwa
    DEPENDENCE MODELING, 2024, 12 (01):
  • [35] An Overview of Kriging and Cokriging Predictors for Functional Random Fields
    Giraldo, Ramon
    Leiva, Victor
    Castro, Cecilia
    MATHEMATICS, 2023, 11 (15)
  • [36] Information Acquisition in the Exploration of Random Fields
    Baillieul, J.
    Baronov, D.
    THREE DECADES OF PROGRESS IN CONTROL SCIENCES, 2010, : 1 - 17
  • [37] Enhanced coregionalization analysis for simulating vector Gaussian random fields
    Emery, Xavier
    Ortiz, Julian M.
    COMPUTERS & GEOSCIENCES, 2012, 42 : 126 - 135
  • [38] Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction
    Harbrecht, Helmut
    Herrmann, Lukas
    Kirchner, Kristin
    Schwab, Christoph
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (05)
  • [39] Fast and exact simulation of Gaussian random fields defined on the sphere cross time
    Cuevas, Francisco
    Allard, Denis
    Porcu, Emilio
    STATISTICS AND COMPUTING, 2020, 30 (01) : 187 - 194
  • [40] Sampling Strategies for Fast Updating of Gaussian Markov Random Fields
    Brown, D. Andrew
    McMahan, Christopher S.
    Self, Stella Watson
    AMERICAN STATISTICIAN, 2021, 75 (01) : 52 - 65