DOC-SLAM: Robust Stereo SLAM with Dynamic Object Culling

被引:4
|
作者
Lyu, Lin [1 ]
Ding, Yan [1 ]
Yuan, Yating [2 ]
Zhang, Yutong [1 ]
Liu, Jinpeng [1 ]
Li, Jiaxin [1 ]
机构
[1] Beijing Inst Technol, Sch Aerosp Engn, Beijing, Peoples R China
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
关键词
dynamic object culling; SLAM system; panoptic segmentation; trajectory estimation;
D O I
10.1109/ICARA51699.2021.9376418
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To improve the accuracy of estimating camera trajectory in dynamic scenes, this paper proposes Dynamic Object Culling SLAM(DOC-SLAM), a stereo SLAM system that achieves good performance by culling actual moving objects in highly dynamic environments. DOC-SLAM combines the semantic information from panoptic segmentation with the point features from optical flow together to detect potential moving objects. And a moving consistency check module is designed to determine and remove the feature points in objects which are in motion so as to accomplish dynamic objects culling. Besides, for enhancing the robustness of our system, we devise a key point supplement strategy to provide sufficient and reliable key points for tracking. Meanwhile, the trajectory and landmarks are generated for localization and mapping of robots. The experimental evaluation on public datasets demonstrates that our DOC-SLAM can fit highly dynamic scenes.
引用
收藏
页码:258 / 262
页数:5
相关论文
共 50 条
  • [1] Robust Stereo Visual SLAM for Dynamic Environments With Moving Object
    Li, Gang
    Liao, Xiang
    Huang, Huilan
    Song, Shaojian
    Liu, Bin
    Zeng, Yawen
    IEEE ACCESS, 2021, 9 : 32310 - 32320
  • [2] Dynam-SLAM: An Accurate, Robust Stereo Visual-Inertial SLAM Method in Dynamic Environments
    Yin, Hesheng
    Li, Shaomiao
    Tao, Yu
    Guo, Junlong
    Huang, Bo
    IEEE TRANSACTIONS ON ROBOTICS, 2022,
  • [3] Dynam-SLAM: An Accurate, Robust Stereo Visual-Inertial SLAM Method in Dynamic Environments
    Yin, Hesheng
    Li, Shaomiao
    Tao, Yu
    Guo, Junlong
    Huang, Bo
    IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (01) : 289 - 308
  • [4] Object SLAM With Robust Quadric Initialization and Mapping for Dynamic Outdoors
    Tian, Rui
    Zhang, Yunzhou
    Cao, Zhenzhong
    Zhang, Jinpeng
    Yang, Linghao
    Coleman, Sonya
    Kerr, Dermot
    Li, Kun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (10) : 11080 - 11095
  • [5] DOE-SLAM: Dynamic Object Enhanced Visual SLAM
    Hu, Xiao
    Lang, Jochen
    SENSORS, 2021, 21 (09)
  • [6] OL-SLAM: A Robust and Versatile System of Object Localization and SLAM
    Chen, Chao
    Ma, Yukai
    Lv, Jiajun
    Zhao, Xiangrui
    Li, Laijian
    Liu, Yong
    Gao, Wang
    SENSORS, 2023, 23 (02)
  • [7] DOA-SLAM: An Efficient Stereo Visual SLAM System in Dynamic Environment
    Zhaoqian Jia
    Yixiao Ma
    Junwen Lai
    Zhiguo Wang
    International Journal of Control, Automation and Systems, 2025, 23 (4) : 1181 - 1198
  • [8] DOT-SLAM: A Stereo Visual Simultaneous Localization and Mapping (SLAM) System with Dynamic Object Tracking Based on Graph Optimization
    Zhu, Yuan
    An, Hao
    Wang, Huaide
    Xu, Ruidong
    Sun, Zhipeng
    Lu, Ke
    SENSORS, 2024, 24 (14)
  • [9] ARD-SLAM: Accurate and robust dynamic SLAM using dynamic object identification and improved multi-view geometrical approaches
    Ul Islam, Qamar
    Ibrahim, Haidi
    Chin, Pan Kok
    Lim, Kevin
    Abdullah, Mohd Zaid
    Khozaei, Fatemeh
    DISPLAYS, 2024, 82
  • [10] Robust Monocular SLAM in Dynamic Environments
    Tan, Wei
    Liu, Haomin
    Dong, Zilong
    Zhang, Guofeng
    Bao, Hujun
    2013 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR) - SCIENCE AND TECHNOLOGY, 2013, : 209 - 218