Global fuel moisture content mapping from MODIS

被引:49
作者
Quan, Xingwen [1 ,2 ]
Yebra, Marta [3 ,4 ,5 ]
Riano, David [6 ,7 ]
He, Binbin [1 ]
Lai, Gengke [1 ]
Liu, Xiangzhuo [8 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[3] Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, ACT, Australia
[4] Bushfire & Nat Hazards Cooperat Res Ctr, Melbourne, Vic, Australia
[5] Australian Natl Univ, Sch Engn, Canberra, ACT, Australia
[6] Univ Calif Davis, Ctr Spatial Technol & Remote Sensing CSTARS, 139 Veihmeyer Hall,One Shields Ave, Davis, CA 95616 USA
[7] CSIC, Ctr Ciencias Humanas & Sociales CCHS, Inst Econ Geog & Demog IEGD, Albasanz 26-28, Madrid 28037, Spain
[8] Univ Bordeaux, INRAE, UMR1391, ISPA, F-33140 Villenave Dornon, France
基金
中国国家自然科学基金;
关键词
Fire Danger; Fuel Moisture Content; Global Scale; Model Inversion; MODIS; Radiative Transfer Model; CANOPY WATER-CONTENT; RADIATIVE-TRANSFER MODEL; LEAF-AREA INDEX; HYPERSPECTRAL DATA; VEGETATION WATER; FOREST-FIRE; REFLECTANCE; INVERSION; RETRIEVAL; IMAGES;
D O I
10.1016/j.jag.2021.102354
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Fuel moisture content (FMC) of live vegetation is a crucial wildfire risk and spread rate driver. This study presents the first daily FMC product at a global scale and 500 m pixel resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) and radiative transfer models (RTMs) inversion techniques. Firstly, multisource information parameterized the PROSPECT-5 (leaf level), 4SAIL (grass and shrub canopy level) and GeoSail (tree canopy level) RTMs to generate three look-up tables (LUTs). Each LUT contained the most realistic model inputs range and combination, and the corresponding simulated spectra. Secondly, for each date and location of interest, a global landcover map classified fuels into three classes: grassland, shrubland and forest. For each fuel class, the best LUT-based inversion strategy based on spectral information, cost function, percentage of solutions, and central tendency determined the optimal model for the global FMC product. Finally, 3,034 FMC measurements from 120 worldwide sites validated the statistically significant results (R2 = 0.62, RMSE = 34.57%, p < 0.01). Filtering out low quality field measurements achieved better accuracy (R2 = 0.71, RMSE = 32.36%, p < 0.01, n = 2008). It is anticipated that this global FMC product can assist in wildfire danger modeling, early prediction, suppression and response, as well as improve awareness of wildfire risk to life and property.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Assessment of methods for mapping snow cover from MODIS
    Rittger, Karl
    Painter, Thomas H.
    Dozier, Jeff
    ADVANCES IN WATER RESOURCES, 2013, 51 : 367 - 380
  • [32] Retrieval of canopy moisture content for dynamic fire risk assessment using simulated MODIS bands
    Maffei, Carmine
    Leone, Antonio P.
    Meoli, Giuseppe
    Calabro, Gaetano
    Menenti, Massimo
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY IX, 2007, 6742
  • [33] A simple index for assessing fuel moisture content
    Sharples, J. J.
    McRae, R. H. D.
    Weber, R. O.
    Gill, A. M.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2009, 24 (05) : 637 - 646
  • [34] Monitoring live fuel moisture content of heathland, shrubland and sclerophyll forest in south-eastern Australia using MODIS data
    Caccamo, G.
    Chisholm, L. A.
    Bradstock, R. A.
    Puotinen, M. L.
    Pippen, B. G.
    INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2012, 21 (03) : 257 - 269
  • [35] Improving wildfire occurrence modelling by integrating time-series features of weather and fuel moisture content
    Quan, Xingwen
    Wang, Wenli
    Xie, Qian
    He, Binbin
    de Dios, Victor Resco
    Yebra, Marta
    Jiao, Miao
    Chen, Rui
    ENVIRONMENTAL MODELLING & SOFTWARE, 2023, 170
  • [36] Investigating Live Fuel Moisture Content Estimation in Fire-Prone Shrubland from Remote Sensing Using Empirical Modelling and RTM Simulations
    Marino, Eva
    Yebra, Marta
    Guillen-Climent, Mariluz
    Algeet, Nur
    Tome, Jose Luis
    Madrigal, Javier
    Guijarro, Mercedes
    Hernando, Carmen
    REMOTE SENSING, 2020, 12 (14)
  • [37] Characterizing the antecedent rainfall and ATI-MODIS-derived soil moisture content of shallow landslides in Taiwan
    Liou, Yuei-An
    Lin, Jung-Jun
    LANDSLIDES, 2025, : 2237 - 2272
  • [38] GLOBAL WATER MAPPING USING MODIS TASSELED CAP INDEXES
    Nguyen Thanh Hoan
    Tateishi, Ryutaro
    Phong, Dong Xuan
    Johnson, Brian
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7161 - 7164
  • [39] Improvement and Validation of NASA/MODIS NRT Global Flood Mapping
    Lin, Li
    Di, Liping
    Tang, Junmei
    Yu, Eugene
    Zhang, Chen
    Rahman, Md. Shahinoor
    Shrestha, Ranjay
    Kang, Lingjun
    REMOTE SENSING, 2019, 11 (02)
  • [40] Remote sensing of fuel moisture content from the ratios of canopy water indices with a foliar dry matter index
    Hunt, E. Raymond, Jr.
    Wang, Lingli
    Qu, John J.
    Hao, Xianjun
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY IX, 2012, 8513