Global fuel moisture content mapping from MODIS

被引:49
作者
Quan, Xingwen [1 ,2 ]
Yebra, Marta [3 ,4 ,5 ]
Riano, David [6 ,7 ]
He, Binbin [1 ]
Lai, Gengke [1 ]
Liu, Xiangzhuo [8 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[3] Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, ACT, Australia
[4] Bushfire & Nat Hazards Cooperat Res Ctr, Melbourne, Vic, Australia
[5] Australian Natl Univ, Sch Engn, Canberra, ACT, Australia
[6] Univ Calif Davis, Ctr Spatial Technol & Remote Sensing CSTARS, 139 Veihmeyer Hall,One Shields Ave, Davis, CA 95616 USA
[7] CSIC, Ctr Ciencias Humanas & Sociales CCHS, Inst Econ Geog & Demog IEGD, Albasanz 26-28, Madrid 28037, Spain
[8] Univ Bordeaux, INRAE, UMR1391, ISPA, F-33140 Villenave Dornon, France
基金
中国国家自然科学基金;
关键词
Fire Danger; Fuel Moisture Content; Global Scale; Model Inversion; MODIS; Radiative Transfer Model; CANOPY WATER-CONTENT; RADIATIVE-TRANSFER MODEL; LEAF-AREA INDEX; HYPERSPECTRAL DATA; VEGETATION WATER; FOREST-FIRE; REFLECTANCE; INVERSION; RETRIEVAL; IMAGES;
D O I
10.1016/j.jag.2021.102354
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Fuel moisture content (FMC) of live vegetation is a crucial wildfire risk and spread rate driver. This study presents the first daily FMC product at a global scale and 500 m pixel resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) and radiative transfer models (RTMs) inversion techniques. Firstly, multisource information parameterized the PROSPECT-5 (leaf level), 4SAIL (grass and shrub canopy level) and GeoSail (tree canopy level) RTMs to generate three look-up tables (LUTs). Each LUT contained the most realistic model inputs range and combination, and the corresponding simulated spectra. Secondly, for each date and location of interest, a global landcover map classified fuels into three classes: grassland, shrubland and forest. For each fuel class, the best LUT-based inversion strategy based on spectral information, cost function, percentage of solutions, and central tendency determined the optimal model for the global FMC product. Finally, 3,034 FMC measurements from 120 worldwide sites validated the statistically significant results (R2 = 0.62, RMSE = 34.57%, p < 0.01). Filtering out low quality field measurements achieved better accuracy (R2 = 0.71, RMSE = 32.36%, p < 0.01, n = 2008). It is anticipated that this global FMC product can assist in wildfire danger modeling, early prediction, suppression and response, as well as improve awareness of wildfire risk to life and property.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] MONITORING LIVE FUEL MOISTURE USING SOIL MOISTURE AND REMOTE SENSING PROXIES
    Qi, Yi
    Dennison, Philip E.
    Spencer, Jessica
    Riano, David
    FIRE ECOLOGY, 2012, 8 (03): : 71 - 87
  • [22] ASSESSMENT OF THE EFFECT OF PROSAILH FOR OPEN AND CLOSED SHRUBLANDS LIVE FUEL MOISTURE CONTENT RETRIEVAL
    Lai, Gengke
    Quan, Xingwen
    He, Binbin
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6778 - 6781
  • [23] Model-driven estimation of closed and open shrublands live fuel moisture content
    Lai, Gengke
    Quan, Xingwen
    Yebra, Marta
    He, Binbin
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 1837 - 1856
  • [24] Estimating fuel response time and predicting fuel moisture content from field data
    Catchpole, EA
    Catchpole, WR
    Viney, NR
    McCaw, WL
    Marsden-Smedley, JB
    INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2001, 10 (02) : 215 - 222
  • [25] A global canopy water content product from AVHRR/Metop
    Javier Garcia-Haro, Francisco
    Campos-Taberner, Manuel
    Moreno, Alvaro
    Torbern Tagesson, Hakan
    Camacho, Fernando
    Martinez, Beatriz
    Sanchez, Sergio
    Piles, Maria
    Camps-Valls, Gustau
    Yebra, Marta
    Amparo Gilabert, Maria
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 162 : 77 - 93
  • [26] Influence of soil texture on the estimation of bare soil moisture content using MODIS images
    Bidkhani, Nabi Olah Gholami
    Mobasheri, Mohammad Reza
    EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01) : 911 - 920
  • [27] Projecting live fuel moisture content via deep learning
    Miller, Lynn
    Zhu, Liujun
    Yebra, Marta
    Rudiger, Christoph
    Webb, Geoffrey I. I.
    INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2023, 32 (05) : 709 - 727
  • [28] Generation of a Species-Specific Look-Up Table for Fuel Moisture Content Assessment
    Yebra, Marta
    Chuvieco, Emilio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2009, 2 (01) : 21 - 26
  • [29] Assessment of the Dual Polarimetric Sentinel-1A Data for Forest Fuel Moisture Content Estimation
    Wang, Long
    Quan, Xingwen
    He, Binbin
    Yebra, Marta
    Xing, Minfeng
    Liu, Xiangzhuo
    REMOTE SENSING, 2019, 11 (13)
  • [30] Estimating live fuel moisture content from remotely sensed reflectance
    Danson, FM
    Bowyer, P
    REMOTE SENSING OF ENVIRONMENT, 2004, 92 (03) : 309 - 321