Global fuel moisture content mapping from MODIS

被引:49
作者
Quan, Xingwen [1 ,2 ]
Yebra, Marta [3 ,4 ,5 ]
Riano, David [6 ,7 ]
He, Binbin [1 ]
Lai, Gengke [1 ]
Liu, Xiangzhuo [8 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[3] Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, ACT, Australia
[4] Bushfire & Nat Hazards Cooperat Res Ctr, Melbourne, Vic, Australia
[5] Australian Natl Univ, Sch Engn, Canberra, ACT, Australia
[6] Univ Calif Davis, Ctr Spatial Technol & Remote Sensing CSTARS, 139 Veihmeyer Hall,One Shields Ave, Davis, CA 95616 USA
[7] CSIC, Ctr Ciencias Humanas & Sociales CCHS, Inst Econ Geog & Demog IEGD, Albasanz 26-28, Madrid 28037, Spain
[8] Univ Bordeaux, INRAE, UMR1391, ISPA, F-33140 Villenave Dornon, France
基金
中国国家自然科学基金;
关键词
Fire Danger; Fuel Moisture Content; Global Scale; Model Inversion; MODIS; Radiative Transfer Model; CANOPY WATER-CONTENT; RADIATIVE-TRANSFER MODEL; LEAF-AREA INDEX; HYPERSPECTRAL DATA; VEGETATION WATER; FOREST-FIRE; REFLECTANCE; INVERSION; RETRIEVAL; IMAGES;
D O I
10.1016/j.jag.2021.102354
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Fuel moisture content (FMC) of live vegetation is a crucial wildfire risk and spread rate driver. This study presents the first daily FMC product at a global scale and 500 m pixel resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) and radiative transfer models (RTMs) inversion techniques. Firstly, multisource information parameterized the PROSPECT-5 (leaf level), 4SAIL (grass and shrub canopy level) and GeoSail (tree canopy level) RTMs to generate three look-up tables (LUTs). Each LUT contained the most realistic model inputs range and combination, and the corresponding simulated spectra. Secondly, for each date and location of interest, a global landcover map classified fuels into three classes: grassland, shrubland and forest. For each fuel class, the best LUT-based inversion strategy based on spectral information, cost function, percentage of solutions, and central tendency determined the optimal model for the global FMC product. Finally, 3,034 FMC measurements from 120 worldwide sites validated the statistically significant results (R2 = 0.62, RMSE = 34.57%, p < 0.01). Filtering out low quality field measurements achieved better accuracy (R2 = 0.71, RMSE = 32.36%, p < 0.01, n = 2008). It is anticipated that this global FMC product can assist in wildfire danger modeling, early prediction, suppression and response, as well as improve awareness of wildfire risk to life and property.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Assessing the Effects of Fuel Moisture Content on the 2018 Megafires in California
    Kang, Zhenyu
    Quan, Xingwen
    Lai, Gengke
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 868 - 877
  • [12] MAPPING LIVE FUEL MOISTURE CONTENT AND FLAMMABILITY FOR CONTINENTAL AUSTRALIA USING OPTICAL REMOTE SENSING
    Yebra, M.
    Quan, X.
    Riano, D.
    Larraondo, Rozas P.
    van Dijk, Albert I. J. M.
    Cary, G. J.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5903 - 5906
  • [13] Estimation of live fuel moisture content of shrubland using MODIS and Sentinel-2 images
    Marino, Eva
    Guillen-Climent, Mariluz
    Algeet, Nur
    Luis Tome, Jose
    Hernando, Carmen
    ADVANCES IN FOREST FIRE RESEARCH 2018, 2018, : 218 - 226
  • [14] Retrieval of fuel moisture content by using radiative transfer models from optical remote sensing data
    Quan X.
    He B.
    Liu X.
    Liao Z.
    Qiu S.
    Yin C.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (01): : 62 - 77
  • [15] A FUEL MOISTURE CONTENT MONITORING METHODOLOGY BASED ON OPTICAL REMOTE SENSING
    Li, Fan
    Li, Yuxia
    Zhang, Cunjie
    Cheng, Yuan
    Li, Yuzhen
    He, Lei
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4634 - 4637
  • [16] Mapping fuel moisture content in upland vegetation using airborne hyperspectral imagery
    Al-Moustafa, Turkia
    Armitage, Richard P.
    Danson, F. Mark
    REMOTE SENSING OF ENVIRONMENT, 2012, 127 : 74 - 83
  • [17] Low-variance estimation of live fuel moisture content using VIIRS data radiative transfer model
    Yang, Shuai
    Chen, Rui
    He, Binbin
    Zhang, Yiru
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 136
  • [18] Estimate live fuel moisture content with MODIS data A Case Study in Greater Hinggan Mountains of Northeast China
    Han Xiaoyong
    Guo Guangmeng
    Yang Jie
    EPLWW3S 2011: 2011 INTERNATIONAL CONFERENCE ON ECOLOGICAL PROTECTION OF LAKES-WETLANDS-WATERSHED AND APPLICATION OF 3S TECHNOLOGY, VOL 3, 2011, : 376 - 378
  • [19] Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem
    Chuvieco, Emilio
    Gonzalez, Isabel
    Verdu, Felipe
    Aguado, Inmaculada
    Yebra, Marta
    INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2009, 18 (04) : 430 - 441
  • [20] Regional estimation of woodland moisture content by inverting Radiative Transfer Models
    Jurdao, Sara
    Yebra, Marta
    Guerschman, Juan Pablo
    Chuvieco, Emilio
    REMOTE SENSING OF ENVIRONMENT, 2013, 132 : 59 - 70