Global fuel moisture content mapping from MODIS

被引:49
作者
Quan, Xingwen [1 ,2 ]
Yebra, Marta [3 ,4 ,5 ]
Riano, David [6 ,7 ]
He, Binbin [1 ]
Lai, Gengke [1 ]
Liu, Xiangzhuo [8 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[3] Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, ACT, Australia
[4] Bushfire & Nat Hazards Cooperat Res Ctr, Melbourne, Vic, Australia
[5] Australian Natl Univ, Sch Engn, Canberra, ACT, Australia
[6] Univ Calif Davis, Ctr Spatial Technol & Remote Sensing CSTARS, 139 Veihmeyer Hall,One Shields Ave, Davis, CA 95616 USA
[7] CSIC, Ctr Ciencias Humanas & Sociales CCHS, Inst Econ Geog & Demog IEGD, Albasanz 26-28, Madrid 28037, Spain
[8] Univ Bordeaux, INRAE, UMR1391, ISPA, F-33140 Villenave Dornon, France
基金
中国国家自然科学基金;
关键词
Fire Danger; Fuel Moisture Content; Global Scale; Model Inversion; MODIS; Radiative Transfer Model; CANOPY WATER-CONTENT; RADIATIVE-TRANSFER MODEL; LEAF-AREA INDEX; HYPERSPECTRAL DATA; VEGETATION WATER; FOREST-FIRE; REFLECTANCE; INVERSION; RETRIEVAL; IMAGES;
D O I
10.1016/j.jag.2021.102354
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Fuel moisture content (FMC) of live vegetation is a crucial wildfire risk and spread rate driver. This study presents the first daily FMC product at a global scale and 500 m pixel resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) and radiative transfer models (RTMs) inversion techniques. Firstly, multisource information parameterized the PROSPECT-5 (leaf level), 4SAIL (grass and shrub canopy level) and GeoSail (tree canopy level) RTMs to generate three look-up tables (LUTs). Each LUT contained the most realistic model inputs range and combination, and the corresponding simulated spectra. Secondly, for each date and location of interest, a global landcover map classified fuels into three classes: grassland, shrubland and forest. For each fuel class, the best LUT-based inversion strategy based on spectral information, cost function, percentage of solutions, and central tendency determined the optimal model for the global FMC product. Finally, 3,034 FMC measurements from 120 worldwide sites validated the statistically significant results (R2 = 0.62, RMSE = 34.57%, p < 0.01). Filtering out low quality field measurements achieved better accuracy (R2 = 0.71, RMSE = 32.36%, p < 0.01, n = 2008). It is anticipated that this global FMC product can assist in wildfire danger modeling, early prediction, suppression and response, as well as improve awareness of wildfire risk to life and property.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Live fuel moisture content estimation from MODIS: A deep learning approach
    Zhu, Liujun
    Webb, Geoffrey, I
    Yebra, Marta
    Scortechini, Gianluca
    Miller, Lynn
    Petitjean, Francois
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 179 : 81 - 91
  • [2] Sub-daily live fuel moisture content estimation from Himawari-8 data
    Quan, Xingwen
    Chen, Rui
    Yebra, Marta
    Riano, David
    de Dios, Victor Resco
    Li, Xing
    He, Binbin
    Nolan, Rachael H.
    Griebel, Anne
    Boer, Matthias M.
    Sun, Yuanqi
    REMOTE SENSING OF ENVIRONMENT, 2024, 308
  • [3] Live Fuel Moisture Content Mapping in the Mediterranean Basin Using Random Forests and Combining MODIS Spectral and Thermal Data
    Cunill Camprubi, Angel
    Gonzalez-Moreno, Pablo
    Resco de Dios, Victor
    REMOTE SENSING, 2022, 14 (13)
  • [4] Estimation of live fuel moisture content from MODIS images for fire risk assessment
    Yebra, Marta
    Chuvieco, Emilio
    Riano, David
    AGRICULTURAL AND FOREST METEOROLOGY, 2008, 148 (04) : 523 - 536
  • [5] Retrieval of forest fuel moisture content using a coupled radiative transfer model
    Quan, Xingwen
    He, Binbin
    Yebra, Marta
    Yin, Changming
    Liao, Zhanmang
    Li, Xing
    ENVIRONMENTAL MODELLING & SOFTWARE, 2017, 95 : 290 - 302
  • [6] Estimation of Grassland Live Fuel Moisture Content From Ratio of Canopy Water Content and Foliage Dry Biomass
    Quan, Xingwen
    He, Binbin
    Li, Xing
    Tang, Zhi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (09) : 1903 - 1907
  • [7] Mapping live fuel moisture with MODIS data: A multiple regression approach
    Peterson, Seth H.
    Roberts, Dar A.
    Dennison, Philip E.
    REMOTE SENSING OF ENVIRONMENT, 2008, 112 (12) : 4272 - 4284
  • [8] SAR-enhanced mapping of live fuel moisture content
    Rao, Krishna
    Williams, A. Park
    Flefil, Jacqueline Fortin
    Konings, Alexandra G.
    REMOTE SENSING OF ENVIRONMENT, 2020, 245
  • [9] Effects of Live Fuel Moisture Content on Wildfire Occurrence in Fire-Prone Regions over Southwest China
    Luo, Kaiwei
    Quan, Xingwen
    He, Binbin
    Yebra, Marta
    FORESTS, 2019, 10 (10):
  • [10] Estimation of Herbaceous Fuel Moisture Content Using Vegetation Indices and Land Surface Temperature from MODIS Data
    Sow, Momadou
    Mbow, Cheikh
    Hely, Christelle
    Fensholt, Rasmus
    Sambou, Bienvenu
    REMOTE SENSING, 2013, 5 (06) : 2617 - 2638