Decreasing the Energy Consumption of the CO2 Electrolysis Process Using a Magnetic Field

被引:37
作者
Bhargava, Saket S. [1 ,2 ]
Azmoodeh, Daniel [1 ]
Chen, Xinyi [2 ,3 ]
Cofell, Emiliana R. [2 ,4 ]
Esposito, Anne Marie [3 ]
Verma, Sumit [1 ]
Gewirth, Andrew A. [2 ,3 ]
Kenis, Paul J. A. [1 ,2 ]
机构
[1] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[2] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 8190395, Japan
[3] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
关键词
ELECTROCHEMICAL REDUCTION; WATER OXIDATION; CARBON-DIOXIDE; FLOW; ELECTROCATALYSTS; ELECTRODES; EFFICIENT; LAYERS; AG;
D O I
10.1021/acsenergylett.1c01029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The renewable electricity-powered electrolysis of CO2 could be a viable carbon-neutral method for producing carbon-based value-added chemicals like carbon monoxide, formic acid, ethylene, and ethanol. A typical CO2 electrolyzer suffers, however, from the high power requirements, mainly due to the energy-intense anode reaction. In this work, we decrease the anode overpotential and thus reduce the overall cell energy consumption by using a NiFe-based bimetallic catalyst at the anode and applying a magnetic field. For a CO2 electrolysis process producing CO in a gas diffusion electrode-based flow electrolyzer, we demonstrate that power savings in the range from 7% to 6496 can be achieved at CO partial current densities exceeding -300 mA/cm(2) using a NiFe catalyst at the anode and/or by using a magnetic field at the anode. We achieve a maximum CO partial current density of -565 mA/cm(2) at a full cell energy efficiency of 45% with 2 M KOH as the electrolyte.
引用
收藏
页码:2427 / 2433
页数:7
相关论文
共 37 条
[1]   DIFFUSION PROCESS IN VISCOUS-FLOW OF ELECTROLYTE SOLUTION IN MAGNETOHYDRODYNAMIC PUMP ELECTRODES [J].
AOGAKI, R ;
FUEKI, K ;
MUKAIBO, T .
DENKI KAGAKU, 1976, 44 (02) :89-94
[2]  
Aogaki R, 1975, DENKI KAGAKU, V43, P504, DOI [10.5796/kogyobutsurikagaku.43.504, DOI 10.5796/KOGYOBUTSURIKAGAKU.43.504]
[3]  
Aogaki R., 1975, J. Stage, V43, P509, DOI DOI 10.5796/KOGYOBUTSURIKAGAKU.43.509
[4]   Structure- and Electrolyte-Sensitivity in CO2 Electroreduction [J].
Aran-Ais, Rosa M. ;
Gao, Dunfeng ;
Roldan Cuenya, Beatriz .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (11) :2906-2917
[5]  
Bard A. J., 2001, ELECTROCHEMICAL METH
[6]   System Design Rules for Intensifying the Electrochemical Reduction of CO2 to CO on Ag Nanoparticles [J].
Bhargava, Saket S. ;
Proietto, Federica ;
Azmoodeh, Daniel ;
Cofell, Emiliana R. ;
Henckel, Danielle A. ;
Verma, Sumit ;
Brooks, Christopher J. ;
Gewirth, Andrew A. ;
Kenis, Paul J. A. .
CHEMELECTROCHEM, 2020, 7 (09) :2001-2011
[7]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[8]   Investigation of Electrolyte-Dependent Carbonate Formation on Gas Diffusion Electrodes for CO2 Electrolysis [J].
Cofell, Emiliana R. ;
Nwabara, Uzoma O. ;
Bhargava, Saket S. ;
Henckel, Danielle E. ;
Kenis, Paul J. A. .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (13) :15132-15142
[9]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+
[10]   Is there a magnetic field effect on electrochemical kinetics? [J].
Devos, O ;
Aaboubi, O ;
Chopart, JP ;
Olivier, A ;
Gabrielli, C ;
Tribollet, B .
JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (07) :1544-1548