Robust manufacturing of lipid-polymer nanoparticles through feedback control of parallelized swirling microvortices

被引:18
作者
Toth, Michael J. [1 ]
Kim, Taeyoung [1 ]
Kim, YongTae [1 ,2 ,3 ,4 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Parker H Petit Inst Bioengn & Biosci, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Inst Elect & Nanotechnol, 345 Ferst Dr Rm 3134, Atlanta, GA 30332 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
HIGH-THROUGHPUT SYNTHESIS; MICROFLUIDIC SYNTHESIS; HYBRID NANOPARTICLES; MASS-PRODUCTION; SCALE-UP; DELIVERY; CHIP; MODALITY; DROPLETS; DEVICES;
D O I
10.1039/c7lc00668c
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A variety of therapeutic and/or diagnostic nanoparticles (NPs), or nanomedicines, have been formulated for improved drug delivery and imaging applications. Microfluidic technology enables continuous and highly reproducible synthesis of NPs through controlled mixing processes at the micro-and nanoscale. Yet, the inherent low-throughput remains a critical roadblock, precluding the probable applications of new nanomedicines for clinical translation. Here we present robust manufacturing of lipid-polymer NPs (LPNPs) through feedback controlled operation of parallelized swirling microvortex reactors (SMRs). We demonstrate the capability of a single SMR to continuously produce multicomponent NPs and the high throughput performance of parallelized SMRs for large-scale production (1.8 kg d(-1)) of LPNPs while maintaining the physicochemical properties. Finally, we present robust and reliable manufacturing of NPs by integrating the parallelized SMR platform with our custom high-precision feedback control system that addresses unpredictable disturbances during the production. Our approach may contribute to efficient development and optimization of a wide range of multicomponent NPs for medical imaging and drug delivery, ultimately facilitating good manufacturing practice (GMP) production and accelerating the clinical translation.
引用
收藏
页码:2805 / 2813
页数:9
相关论文
共 44 条
  • [1] Aliofkhazraei M, 2016, HDB NANOPARTICLES, P455
  • [2] Cancer active targeting by nanoparticles: a comprehensive review of literature
    Bazak, Remon
    Houri, Mohamad
    El Achy, Samar
    Kamel, Serag
    Refaat, Tamer
    [J]. JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2015, 141 (05) : 769 - 784
  • [3] Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA
    Belliveau, Nathan M.
    Huft, Jens
    Lin, Paulo J. C.
    Chen, Sam
    Leung, Alex K. K.
    Leaver, Timothy J.
    Wild, Andre W.
    Lee, Justin B.
    Taylor, Robert J.
    Tam, Ying K.
    Hansen, Carl L.
    Cullis, Pieter R.
    [J]. MOLECULAR THERAPY-NUCLEIC ACIDS, 2012, 1 : e37
  • [4] Bobo D., 2016, PHARM RES, P1
  • [5] Biotechnology at low Reynolds numbers
    Brody, JP
    Yager, P
    Goldstein, RE
    Austin, RH
    [J]. BIOPHYSICAL JOURNAL, 1996, 71 (06) : 3430 - 3441
  • [6] Chan H. F., 2016, REGENER BIOMATER
  • [7] Nanomedicines for endothelial disorders
    Chung, Bomy Lee
    Toth, Michael J.
    Kamaly, Nazila
    Sei, Yoshitaka J.
    Becraft, Jacob
    Mulder, Willem J. M.
    Fayad, Zahi A.
    Farokhzad, Omid C.
    Kim, YongTae
    Langer, Robert
    [J]. NANO TODAY, 2015, 10 (06) : 759 - 776
  • [8] Nanoparticle therapeutics: an emerging treatment modality for cancer
    Davis, Mark E.
    Chen, Zhuo
    Shin, Dong M.
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2008, 7 (09) : 771 - 782
  • [9] Challenges in Development of Nanoparticle-Based Therapeutics
    Desai, Neil
    [J]. AAPS JOURNAL, 2012, 14 (02): : 282 - 295
  • [10] Donaldson K, 2013, NANOMEDICINE-UK, V8, P403, DOI [10.2217/NNM.13.16, 10.2217/nnm.13.16]