Early Identification of Alzheimer's Disease Using an Ensemble of 3D Convolutional Neural Networks and Magnetic Resonance Imaging

被引:9
作者
Chen, Yuanyuan [1 ]
Jia, Haozhe [1 ]
Huang, Zhaowei [2 ]
Xia, Yong [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Engn, Natl Engn Lab Integrated Aero Space Ground Ocean, Big Data Applicat Technol, Xian 710072, Peoples R China
[2] Univ Sydney, Sch IT, Biomed & Multimedia Informat Technol BMIT Res Grp, Sydney, NSW 2006, Australia
来源
ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018 | 2018年 / 10989卷
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
Alzheimer's disease; Computer-aided diagnosis; Ensemble learning; 3D convolutional neural network; FEATURE REPRESENTATION; CLASSIFICATION; MRI; MORPHOMETRY; VOLUMETRY; DIAGNOSIS;
D O I
10.1007/978-3-030-00563-4_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Alzheimer's disease (AD) has become a nonnegligible global health threat and social problem as the world population ages. The ability to identify AD subjects in an early stage will be increasingly important as disease modifying therapies for AD are developed. In this paper, we propose an ensemble of 3D convolutional neural networks (en3DCNN) for automated identification of AD patients from normal controls using structural magnetic resonance imaging (MRI). We first employ the anatomical automatic labeling (AAL) cortical parcellation map to obtain 116 cortical volumes, then use the samples extracted from each cortical volume to train a 3D convolutional neural network (CNN), and finally assemble the predictions made by well-performed 3D CNNs via majority voting to classify each subject. We evaluated our algorithm against six existing algorithms on 764 MRI scans selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our results indicate that the proposed en3DCNN algorithm is able to achieve the state-of-the-art performance in early identification of Alzheimer's Disease using structural MRI.
引用
收藏
页码:303 / 311
页数:9
相关论文
共 27 条
[1]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[2]   Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective [J].
Baumgart, Matthew ;
Snyder, Heather M. ;
Carrillo, Maria C. ;
Fazio, Sam ;
Kim, Hye ;
Johns, Harry .
ALZHEIMERS & DEMENTIA, 2015, 11 (06) :718-726
[3]   Measuring the thickness of the human cerebral cortex from magnetic resonance images [J].
Fischl, B ;
Dale, AM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (20) :11050-11055
[4]   FreeSurfer [J].
Fischl, Bruce .
NEUROIMAGE, 2012, 62 (02) :774-781
[5]   Deformation-based morphometry and its relation to conventional volumetry of brain lateral ventricles in MRI [J].
Gaser, C ;
Nenadic, I ;
Buchsbaum, BR ;
Hazlett, EA ;
Buchsbaum, MS .
NEUROIMAGE, 2001, 13 (06) :1140-1145
[6]   Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging [J].
Gerardin, Emilie ;
Chetelat, Gael ;
Chupin, Marie ;
Cuingnet, Remi ;
Desgranges, Beatrice ;
Kim, Ho-Sung ;
Niethammer, Marc ;
Dubois, Bruno ;
Lehericy, Stephane ;
Garnero, Line ;
Eustache, Francis ;
Colliot, Olivier .
NEUROIMAGE, 2009, 47 (04) :1476-1486
[7]   Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects [J].
Hua, Xue ;
Leow, Alex D. ;
Parikshak, Neelroop ;
Lee, Suh ;
Chiang, Ming-Chang ;
Toga, Arthur W. ;
Jack, Clifford R., Jr. ;
Weiner, Michael W. ;
Thompson, Paul M. .
NEUROIMAGE, 2008, 43 (03) :458-469
[8]   The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods [J].
Jack, Clifford R., Jr. ;
Bernstein, Matt A. ;
Fox, Nick C. ;
Thompson, Paul ;
Alexander, Gene ;
Harvey, Danielle ;
Borowski, Bret ;
Britson, Paula J. ;
Whitwell, Jennifer L. ;
Ward, Chadwick ;
Dale, Anders M. ;
Felmlee, Joel P. ;
Gunter, Jeffrey L. ;
Hill, Derek L. G. ;
Killiany, Ron ;
Schuff, Norbert ;
Fox-Bosetti, Sabrina ;
Lin, Chen ;
Studholme, Colin ;
DeCarli, Charles S. ;
Krueger, Gunnar ;
Ward, Heidi A. ;
Metzger, Gregory J. ;
Scott, Katherine T. ;
Mallozzi, Richard ;
Blezek, Daniel ;
Levy, Joshua ;
Debbins, Josef P. ;
Fleisher, Adam S. ;
Albert, Marilyn ;
Green, Robert ;
Bartzokis, George ;
Glover, Gary ;
Mugler, John ;
Weiner, Michael W. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (04) :685-691
[9]   Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Jack, Clifford R., Jr. ;
Albert, Marilyn S. ;
Knopman, David S. ;
McKhann, Guy M. ;
Sperling, Reisa A. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :257-262
[10]   MR-BASED HIPPOCAMPAL VOLUMETRY IN THE DIAGNOSIS OF ALZHEIMERS-DISEASE [J].
JACK, CR ;
PETERSEN, RC ;
OBRIEN, PC ;
TANGALOS, EG .
NEUROLOGY, 1992, 42 (01) :183-188