Limiting spectral distribution of a class of Hankel type random matrices

被引:0
|
作者
Basak, Anirban [1 ]
Bose, Arup [2 ]
Mukherjee, Soumendu Sundar [3 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] Indian Stat Inst, Stat & Math Unit, Kolkata 700108, W Bengal, India
[3] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
Hankel matrix; reverse circulant matrix; symmetrized Rayleigh distribution; method of moments; PALINDROMIC TOEPLITZ MATRICES; CIRCULANT-TYPE MATRICES; EIGENVALUES;
D O I
10.1142/S2010326315500100
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an indexed class of real symmetric random matrices which generalize the symmetric Hankel and Reverse Circulant matrices. We show that the limiting spectral distribution of these matrices exists almost surely and the limit is continuous in the index. We also study other properties of the limit and, in particular, explicitly characterize it for a certain subclass of matrices as a mixture of the atomic distribution at zero and the symmetrized Rayleigh distribution.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] A note on the spectral for real Hankel matrices
    Wang, Xiang
    Lu, Linzhang
    Zhu, Chuanxi
    Niu, Qiang
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (02) : 994 - 996
  • [42] NO EIGENVALUES OUTSIDE THE SUPPORT OF THE LIMITING SPECTRAL DISTRIBUTION OF INFORMATION-PLUS-NOISE TYPE MATRICES
    Bai, Zhidong
    Silverstein, Jack W.
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
  • [43] Limiting Spectral Distribution of Random k-Circulants
    Bose, Arup
    Mitra, Joydip
    Sen, Arnab
    JOURNAL OF THEORETICAL PROBABILITY, 2012, 25 (03) : 771 - 797
  • [44] Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices
    Dozier, R. Brent
    Silverstein, Jack W.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (06) : 1099 - 1122
  • [45] Limiting Spectral Distribution of Random k-Circulants
    Arup Bose
    Joydip Mitra
    Arnab Sen
    Journal of Theoretical Probability, 2012, 25 : 771 - 797
  • [46] Limiting empirical distribution for eigenvalues of products of random rectangular matrices
    Zeng, Xingyuan
    STATISTICS & PROBABILITY LETTERS, 2017, 126 : 33 - 40
  • [47] Limiting spectral distribution of the product of truncated Haar unitary matrices
    Adhikari, Kartick
    Bose, Arup
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (02)
  • [48] Limiting spectral distribution of block matrices with Toeplitz block structure
    Basu, Riddhipratim
    Bose, Arup
    Ganguly, Shirshendu
    Hazra, Rajat Subhra
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) : 1430 - 1438
  • [49] On a new class of normal Hankel matrices
    Ikramov K.D.
    Chugunov V.N.
    Moscow University Computational Mathematics and Cybernetics, 2007, 31 (1) : 8 - 10
  • [50] Convergence rate for spectral distribution of addition of random matrices
    Bao, Zhigang
    Erdos, Laszlo
    Schnelli, Kevin
    ADVANCES IN MATHEMATICS, 2017, 319 : 251 - 291