What Makes High-Entropy Alloys Exceptional Electrocatalysts?

被引:216
作者
Loeffler, Tobias [1 ,2 ,3 ]
Ludwig, Alfred [2 ,3 ]
Rossmeisl, Jan [4 ]
Schuhmann, Wolfgang [1 ]
机构
[1] Ruhr Univ Bochum, Analyt Chem, Ctr Electrochem Sci CES, Fac Chem & Biochem, Univ Str 150, D-44780 Bochum, Germany
[2] Ruhr Univ Bochum, Inst Mat, Fac Mech Engn, Univ Str 150, D-44780 Bochum, Germany
[3] Ruhr Univ Bochum, Ctr Interface Dominated High Performance Mat ZGH, Univ Str 150, D-44780 Bochum, Germany
[4] Univ Copenhagen, Ctr High Entropy Alloy Catalysis CH, Dept Chem, Univ Pk 5, DK-2100 Copenhagen, Denmark
基金
新加坡国家研究基金会;
关键词
complex solid solutions; electrocatalysis; energy conversion; high-entropy alloys; materials synthesis; SOLID-SOLUTION ELECTROCATALYSTS; OXYGEN REDUCTION; MULTIELEMENT NANOPARTICLES; SPUTTER-DEPOSITION; PLATINUM; EVOLUTION; STABILITY; PROGRESS; STATE; OXIDE;
D O I
10.1002/anie.202109212
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The formation of a vast number of different multielement active sites in compositionally complex solid solution materials, often more generally termed high-entropy alloys, offers new and unique concepts in catalyst design, which mitigate existing limitations and change the view on structure-activity relations. We discuss these concepts by summarising the currently existing fundamental knowledge and critically assess the chances and limitations of this material class, also highlighting design strategies. A roadmap is proposed, illustrating which of the characteristic concepts could be exploited using which strategy, and which breakthroughs might be possible to guide future research in this highly promising material class for (electro)catalysis.
引用
收藏
页码:26894 / 26903
页数:10
相关论文
共 57 条
  • [1] Recent progress of high-entropy materials for energy storage and conversion
    Amiri, Azadeh
    Shahbazian-Yassar, Reza
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (02) : 782 - 823
  • [2] [Anonymous], 2021, ANGEW CHEM, V133, P7008
  • [3] [Anonymous], 2020, ANGEW CHEM, V132, P5893
  • [4] Complex-Solid-Solution Electrocatalyst Discovery by Computational Prediction and High-Throughput Experimentation**
    Batchelor, Thomas A. A.
    Loeffler, Tobias
    Xiao, Bin
    Krysiak, Olga A.
    Strotkoetter, Valerie
    Pedersen, Jack K.
    Clausen, Christian M.
    Savan, Alan
    Li, Yujiao
    Schuhmann, Wolfgang
    Rossmeisl, Jan
    Ludwig, Alfred
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (13) : 6932 - 6937
  • [5] High-Entropy Alloys as a Discovery Platform for Electrocatalysis
    Batchelor, Thomas A. A.
    Pedersen, Jack K.
    Winther, Simon H.
    Castelli, Ivano E.
    Jacobsen, Karsten W.
    Rossmeisl, Jan
    [J]. JOULE, 2019, 3 (03) : 834 - 845
  • [6] Bishop-Moser J., 2018, Manufacturing High Entropy Alloys: Pathway to Industrial Competitiveness
  • [7] General Solvothermal Synthesis Method for Complete Solubility Range Bimetallic and High-Entropy Alloy Nanocatalysts
    Bondesgaard, Martin
    Broge, Nils Lau Nyborg
    Mamakhel, Aref
    Bremholm, Martin
    Iversen, Bo Brummerstedt
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (50)
  • [8] The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system
    Bracq, Guillaume
    Laurent-Brocq, Mathilde
    Perriere, Loic
    Pires, Remy
    Joubert, Jean-Marc
    Guillot, Ivan
    [J]. ACTA MATERIALIA, 2017, 128 : 327 - 336
  • [9] Colloidal Nanocrystals as Precursors and Intermediates in Solid State Reactions for Multinary Oxide Nanomaterials
    Buonsanti, Raffaella
    Loiudice, Anna
    Mantella, Valeria
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (04) : 754 - 764
  • [10] Beyond the top of the volcano? - A unified approach to electrocatalytic oxygen reduction and oxygen evolution
    Busch, Michael
    Halck, Niels B.
    Kramm, Ulrike I.
    Siahrostami, Samira
    Krtil, Petr
    Rossmeisl, Jan
    [J]. NANO ENERGY, 2016, 29 : 126 - 135