What Makes High-Entropy Alloys Exceptional Electrocatalysts?

被引:257
作者
Loeffler, Tobias [1 ,2 ,3 ]
Ludwig, Alfred [2 ,3 ]
Rossmeisl, Jan [4 ]
Schuhmann, Wolfgang [1 ]
机构
[1] Ruhr Univ Bochum, Analyt Chem, Ctr Electrochem Sci CES, Fac Chem & Biochem, Univ Str 150, D-44780 Bochum, Germany
[2] Ruhr Univ Bochum, Inst Mat, Fac Mech Engn, Univ Str 150, D-44780 Bochum, Germany
[3] Ruhr Univ Bochum, Ctr Interface Dominated High Performance Mat ZGH, Univ Str 150, D-44780 Bochum, Germany
[4] Univ Copenhagen, Ctr High Entropy Alloy Catalysis CH, Dept Chem, Univ Pk 5, DK-2100 Copenhagen, Denmark
基金
新加坡国家研究基金会;
关键词
complex solid solutions; electrocatalysis; energy conversion; high-entropy alloys; materials synthesis; SOLID-SOLUTION ELECTROCATALYSTS; OXYGEN REDUCTION; MULTIELEMENT NANOPARTICLES; SPUTTER-DEPOSITION; PLATINUM; EVOLUTION; STABILITY; PROGRESS; STATE; OXIDE;
D O I
10.1002/anie.202109212
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The formation of a vast number of different multielement active sites in compositionally complex solid solution materials, often more generally termed high-entropy alloys, offers new and unique concepts in catalyst design, which mitigate existing limitations and change the view on structure-activity relations. We discuss these concepts by summarising the currently existing fundamental knowledge and critically assess the chances and limitations of this material class, also highlighting design strategies. A roadmap is proposed, illustrating which of the characteristic concepts could be exploited using which strategy, and which breakthroughs might be possible to guide future research in this highly promising material class for (electro)catalysis.
引用
收藏
页码:26894 / 26903
页数:10
相关论文
共 57 条
[1]   Recent progress of high-entropy materials for energy storage and conversion [J].
Amiri, Azadeh ;
Shahbazian-Yassar, Reza .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (02) :782-823
[2]  
[Anonymous], 2021, ANGEW CHEM, V133, P7008
[3]  
[Anonymous], 2020, ANGEW CHEM, V132, P5893
[4]   Complex-Solid-Solution Electrocatalyst Discovery by Computational Prediction and High-Throughput Experimentation** [J].
Batchelor, Thomas A. A. ;
Loeffler, Tobias ;
Xiao, Bin ;
Krysiak, Olga A. ;
Strotkoetter, Valerie ;
Pedersen, Jack K. ;
Clausen, Christian M. ;
Savan, Alan ;
Li, Yujiao ;
Schuhmann, Wolfgang ;
Rossmeisl, Jan ;
Ludwig, Alfred .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (13) :6932-6937
[5]   High-Entropy Alloys as a Discovery Platform for Electrocatalysis [J].
Batchelor, Thomas A. A. ;
Pedersen, Jack K. ;
Winther, Simon H. ;
Castelli, Ivano E. ;
Jacobsen, Karsten W. ;
Rossmeisl, Jan .
JOULE, 2019, 3 (03) :834-845
[6]  
Bishop-Moser J., 2018, Manufacturing High Entropy Alloys: Pathway to Industrial Competitiveness
[7]   General Solvothermal Synthesis Method for Complete Solubility Range Bimetallic and High-Entropy Alloy Nanocatalysts [J].
Bondesgaard, Martin ;
Broge, Nils Lau Nyborg ;
Mamakhel, Aref ;
Bremholm, Martin ;
Iversen, Bo Brummerstedt .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (50)
[8]   The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system [J].
Bracq, Guillaume ;
Laurent-Brocq, Mathilde ;
Perriere, Loic ;
Pires, Remy ;
Joubert, Jean-Marc ;
Guillot, Ivan .
ACTA MATERIALIA, 2017, 128 :327-336
[9]   Colloidal Nanocrystals as Precursors and Intermediates in Solid State Reactions for Multinary Oxide Nanomaterials [J].
Buonsanti, Raffaella ;
Loiudice, Anna ;
Mantella, Valeria .
ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (04) :754-764
[10]   Beyond the top of the volcano? - A unified approach to electrocatalytic oxygen reduction and oxygen evolution [J].
Busch, Michael ;
Halck, Niels B. ;
Kramm, Ulrike I. ;
Siahrostami, Samira ;
Krtil, Petr ;
Rossmeisl, Jan .
NANO ENERGY, 2016, 29 :126-135