Learning Linear Representations of Nonlinear Dynamics Using Deep Learning

被引:2
作者
Ahmed, Akhil [1 ]
Del Rio-Chanona, Ehecatl Antonio [1 ]
Mercangoz, Mehmet [1 ]
机构
[1] Imperial Coll London, Dept Chem Engn, London, England
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 12期
关键词
System Identification; Koopman Operator; Nonlinear Control; Neural Networks; NEURAL-NETWORKS; SYSTEMS;
D O I
10.1016/j.ifacol.2022.07.305
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel deep learning framework to discover a transformation of a nonlinear dynamical system to an equivalent higher dimensional linear representation. We demonstrate that the resulting learned linear representation accurately captures the dynamics of the original system for a wider range of conditions than standard linearization. As a result of this, we show that the learned linear model can subsequently be used for the successful control of the original system. We demonstrate this by applying the proposed framework to two examples; one from the literature and another more complex example in the form of a Continuous Stirred Tank Reactor (CSTR). Copyright (C) 2022 The Authors.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 26 条
  • [1] An overview of approximation methods for large-scale dynamical systems
    Antoulas, AC
    [J]. ANNUAL REVIEWS IN CONTROL, 2005, 29 (02) : 181 - 190
  • [2] Optimization Methods for Large-Scale Machine Learning
    Bottou, Leon
    Curtis, Frank E.
    Nocedal, Jorge
    [J]. SIAM REVIEW, 2018, 60 (02) : 223 - 311
  • [3] Brockett R.W., 1983, DIFFER GEOM CONTROL, V27, P181
  • [4] Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition
    Brunton, Bingni W.
    Johnson, Lise A.
    Ojemann, Jeffrey G.
    Kutz, J. Nathan
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2016, 258 : 1 - 15
  • [5] Discovering governing equations from data by sparse identification of nonlinear dynamical systems
    Brunton, Steven L.
    Proctor, Joshua L.
    Kutz, J. Nathan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) : 3932 - 3937
  • [6] Robust feedback linearization for nonlinear processes control
    de Jesus Rubio, Jose
    [J]. ISA TRANSACTIONS, 2018, 74 : 155 - 164
  • [7] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [8] Reducing the dimensionality of data with neural networks
    Hinton, G. E.
    Salakhutdinov, R. R.
    [J]. SCIENCE, 2006, 313 (5786) : 504 - 507
  • [9] Data-driven discovery of Koopman eigenfunctions for control
    Kaiser, Eurika
    Kutz, J. Nathan
    Brunton, Steven L.
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [10] Kevrekidis I.G., 2014, ARXIV14112260