High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5)

被引:194
作者
Arbi, K. [1 ]
Bucheli, W. [1 ]
Jimenez, R. [1 ]
Sanz, J. [1 ]
机构
[1] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
关键词
Fast ion conductors; NASICON; NMR spectroscopy; Electric impedance spectroscopy; Lithium batteries; ELECTROCHEMICAL PROPERTIES; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURES; PHASE-TRANSITION; LI-7; NMR; LI1+XTI2-XALX(PO4)(3); IMPEDANCE; MOBILITY; X=0;
D O I
10.1016/j.jeurceramsoc.2014.11.023
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Fast ion conductors Li1+xAlxTi2-x(PO4)(3) (LATP) and Li1-xAlxGe2-x(PO4)(3) (LAGP) with 0 <= x <= 0.5 have been successfully prepared by the solid state reaction method and characterized using X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and impedance spectroscopy (IS) techniques. The structural analysis showed that the main crystalline phase detected in the XRD patterns of prepared samples displays the rhombohedral NASICON-type structure (space group R-3c). From the analysis of the Al-27 and P-31 MAS-NMR spectra, octahedra occupation and cation distribution have been investigated; from Li-7 MAS-NMR spectra, structural sites and local mobility of Li have been analyzed. Information about long-range lithium mobility has been deduced from the analysis of IS data recorded in the frequency 20 Hz to 3 GHz and temperature 100-500 K intervals. The use of the derivative log sigma vs. log omega function has enabled the detection of two high frequency responses that have been associated, according to the core-shell model, to the heterogeneous distribution of Al at surface and inside LATP and LAGP particles. IS measurements showed a higher bulk conductivity (3.4 x 10(-3) and similar to 10(-4) S cm(-1) at RT) and lower activation energy (0.28 and 0.38 eV) in LATP and LAGP samples, respectively. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1477 / 1484
页数:8
相关论文
共 32 条
[1]   STRUCTURE AND THERMAL-EXPANSION OF LIGE2 (PO4)3 [J].
ALAMI, M ;
BROCHU, R ;
SOUBEYROUX, JL ;
GRAVEREAU, P ;
LEFLEM, G ;
HAGENMULLER, P .
JOURNAL OF SOLID STATE CHEMISTRY, 1991, 90 (02) :185-193
[2]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[3]   Non-Arrhenius conductivity in the fast lithium conductor Li1.2Ti1.8Al0.2(PO4)3:: A 7Li NMR and electric impedance study -: art. no. 094302 [J].
Arbi, K ;
Tabellout, M ;
Lazarraga, MG ;
Rojo, JM ;
Sanz, J .
PHYSICAL REVIEW B, 2005, 72 (09)
[4]   Structural Factors That Enhance Lithium Mobility in Fast-Ion Li1+xTi2-xAlx(PO4)3 (0 ≤ x ≤ 0.4) Conductors Investigated by Neutron Diffraction in the Temperature Range 100-500 K [J].
Arbi, K. ;
Hoelzel, M. ;
Kuhn, A. ;
Garcia-Alvarado, F. ;
Sanz, J. .
INORGANIC CHEMISTRY, 2013, 52 (16) :9290-9296
[5]   Li mobility in Nasicon-type materials LiM2(PO4)3, M = Ge, Ti, Sn, Zr and Hf, followed by 7Li NMR spectroscopy [J].
Arbi, K. ;
Paris, M. A. ;
Sanz, J. .
DALTON TRANSACTIONS, 2011, 40 (39) :10195-10202
[6]   Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7.: A parallel NMR and electric impedance study [J].
Arbi, K ;
Mandal, S ;
Rojo, JM ;
Sanz, J .
CHEMISTRY OF MATERIALS, 2002, 14 (03) :1091-1097
[7]   The log(σ) vs. log(ω) derivative plot used to analyze the ac conductivity. Application to fast Li+ ion conductors with perovskite structure [J].
Bucheli, W. ;
Jimenez, R. ;
Sanz, J. ;
Varez, A. .
SOLID STATE IONICS, 2012, 227 :113-118
[8]   Lithium location in NASICON-type Li+ conductors by neutron diffraction.: I.: Triclinic α′-LiZr2(PO4)3 [J].
Catti, M ;
Stramare, S ;
Ibberson, R .
SOLID STATE IONICS, 1999, 123 (1-4) :173-180
[9]   Preparation of LiMn2O4 thin-film electrode on Li1+xAlxTi2-x(PO4)3 NASICON-type solid electrolyte [J].
Dokko, Kaoru ;
Hoshina, Keigo ;
Nakano, Hiroyuki ;
Kanamura, Kiyoshi .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :1100-1103
[10]   Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-GeO2-P2O5 [J].
Fu, J .
SOLID STATE IONICS, 1997, 104 (3-4) :191-194