Moments and distributions of the last exit times for a class of Markov processes

被引:0
作者
Hu, Wei [1 ,2 ,3 ]
Zhu, Quanxin [1 ,2 ,5 ]
Lu, Yi [4 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Inst Finance & Stat, Nanjing, Jiangsu, Peoples R China
[3] Jiangsu Univ Technol, Sch Math & Phys, Changzhou, Peoples R China
[4] Jiangsu Univ Technol, Sch Elect & Informat Engn, Changzhou, Peoples R China
[5] Hunan Normal Univ, Coll Math & Comp Sci, Minist Educ China, Key Lab High Performance Comp & Stochast Informat, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Markov process; Last exit time; Moment; Distribution; ORNSTEIN-UHLENBECK TYPE; JOINT DISTRIBUTIONS; BROWNIAN-MOTION; NETWORKS;
D O I
10.1016/j.matcom.2017.12.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider some related questions to last exit time of general Markov processes. An estimate for the distribution of the last exit time is derived. An equivalent characterization for the finiteness of the k-moments of the last exit time is obtained. Finally, some examples are provided to show the significance and usefulness of our results. (C) 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:146 / 153
页数:8
相关论文
共 24 条
[1]  
Ali MS, 2017, ACTA MATH SCI, V37, P368
[2]   Stochastic global exponential stability for neutral-type impulsive neural networks with mixed time-delays and Markovian jumping parameters [J].
Bao, Haibo ;
Cao, Jinde .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) :3786-3791
[3]  
Blumenthal R.M., 1968, Pure and Applied Mathematics, V29
[4]  
Chen D., 1985, ACTA MATH SINICA, V28, P536
[5]   PROBABILISTIC APPROACH IN POTENTIAL THEORY TO EQUILIBRIUM PROBLEM [J].
CHUNG, KL .
ANNALES DE L INSTITUT FOURIER, 1973, 23 (03) :313-322
[6]   LAST EXIT TIMES AND ADDITIVE FUNCTIONALS [J].
GETOOR, RK ;
SHARPE, MJ .
ANNALS OF PROBABILITY, 1973, 1 (04) :550-569
[7]   BROWNIAN ESCAPE PROCESS [J].
GETOOR, RK .
ANNALS OF PROBABILITY, 1979, 7 (05) :864-867
[8]   MOMENTS OF LAST EXIT TIMES [J].
HAWKES, J .
MATHEMATIKA, 1977, 24 (48) :266-269
[9]   An estimate on the distribution and moments of the last exit time of an elliptic diffusion process [J].
Li Bo ;
Liu Luqin .
ACTA MATHEMATICA SCIENTIA, 2006, 26 (04) :639-645
[10]  
Li C., 1993, CHINESE J APPL PROBA, V9, P289