Ensemble of classifiers for ontology enrichment

被引:0
作者
Semenova, A. V. [1 ]
Kureichik, V. M. [1 ]
机构
[1] Southern Fed Univ, 44 Nekrasovskiy St, Taganrog 347900, Russia
来源
INTERNATIONAL CONFERENCE INFORMATION TECHNOLOGIES IN BUSINESS AND INDUSTRY 2018, PTS 1-4 | 2018年 / 1015卷
关键词
D O I
10.1088/1742-6596/1015/3/032123
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A classifier is a basis of ontology learning systems. Classification of text documents is used in many applications, such as information retrieval, information extraction, definition of spam. A new ensemble of classifiers based on SVM (a method of support vectors), LSTM (neural network) and word embedding are suggested. An experiment was conducted on open data, which allows us to conclude that the proposed classification method is promising. The implementation of the proposed classifier is performed in the Matlab using the functions of the Text Analytics Toolbox. The principal difference between the proposed ensembles of classifiers is the high quality of classification of data at acceptable time costs.
引用
收藏
页数:7
相关论文
共 14 条
[1]  
Ageev M, 2006, OFITSIALNYIE METRIKI
[2]  
Aggarwal Charu C, 2012, Mining text data, P163, DOI [DOI 10.1007/978-1-4614-3223-46, DOI 10.1007/978-1-4614-3223-4, 10.1007/978-1-4614-3223-4]
[3]  
Andrews N.O., 2007, Recent Developments in Document Clustering
[4]  
Bojanowski P, 2017, Transactions of the Association for Computational Linguistics, V5, P135, DOI [10.1162/tacla00051, DOI 10.1162/TACLA00051, 10.1162/tacl_a_00051]
[5]  
Choi FYY, 2001, PROCEEDINGS OF THE 2001 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P109
[6]  
Huang A., 2008, P 6 NZ COMP SCI RES, V4, P9
[7]   Exploratory search: From finding to understanding [J].
Marchionini, G .
COMMUNICATIONS OF THE ACM, 2006, 49 (04) :41-46
[8]  
Mikolov T., 2013, ICLR, P3111
[9]  
[Пархоменко П.А. Parhomenko P.A.], 2017, [Труды Института системного программирования РАН, Trudy Instituta sistemnogo programmirovaniya RAN], V29, P161, DOI 10.15514/ISPRAS-2017-29(2)-6
[10]  
Pennington J., 2014, P 2014 C EMPIRICAL M, P1532