Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications

被引:62
作者
Refaat, Tamer F. [1 ]
Ismail, Syed [2 ]
Koch, Grady J. [2 ]
Rubio, Manuel [2 ]
Mack, Terry L. [3 ]
Notari, Anthony [4 ]
Collins, James E. [4 ]
Lewis, Jasper [5 ]
De Young, Russell [2 ]
Choi, Yonghoon [5 ]
Abedin, M. Nurul [2 ]
Singh, Upendra N. [2 ]
机构
[1] Old Dominion Univ, Appl Res Ctr, Newport News, VA 23606 USA
[2] NASA, Langley Res Ctr, Hampton, VA 23681 USA
[3] Lockheed Martin, Hampton, VA 23681 USA
[4] Sci Syst & Applicat Inc, Hampton, VA 23681 USA
[5] Natl Inst Aerosp, Hampton, VA 23681 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2011年 / 49卷 / 01期
关键词
Backscattering; carbon dioxide; infrared; lidar; remote sensing; 2.1-MU-M HO LIDAR; SENSITIVITY-ANALYSIS; MU-M; LASER; (CO2)-C-12-O-16; PROFILES; CM(-1); BANDS; CH4;
D O I
10.1109/TGRS.2010.2055874
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A 2-mu m backscatter lidar system has been developed by utilizing tunable pulsed laser and infrared phototransistor for the transmitter and the receiver, respectively. To validate the system, the 2-mu m atmospheric backscatter profiles were compared to profiles obtained at 1 and 0.5 mu m using avalanche photodiode and photomultiplier tube, respectively. Consequently, a methodology is proposed to compare the performance of different lidar systems operating at different wavelengths through various detection technologies. The methodology is based on extracting the system equivalent detectivity and comparing it to that of the detectors, as well as the ideal background detectivity. Besides, the 2-mu m system capability for atmospheric CO2 temporal profiling using the differential absorption lidar (DIAL) technique was demonstrated. This was achieved by tuning the laser at slightly different wavelengths around the CO2 R22 absorption line in the 2.05-mu m band. CO2 temporal profiles were also compared to in situ measurements. Preliminary results indicated average mixing ratios close to 390 ppm in the atmospheric boundary layer with 3.0% precision. The development of this system is an initial step for developing a high-resolution, high-precision direct-detection atmospheric CO2 DIAL system. A successful development of this system would be a valuable tool in obtaining and validating global atmospheric CO2 measurements.
引用
收藏
页码:572 / 580
页数:9
相关论文
共 36 条
[1]   Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region [J].
Ambrico, PF ;
Amodeo, A ;
Di Girolamo, P ;
Spinelli, N .
APPLIED OPTICS, 2000, 39 (36) :6847-6865
[2]   TUNABLE 2.1-MU-M HO LIDAR FOR SIMULTANEOUS RANGE-RESOLVED MEASUREMENTS OF ATMOSPHERIC WATER-VAPOR AND AEROSOL BACKSCATTER PROFILES [J].
CHA, SD ;
CHAN, KP ;
KILLINGER, DK .
APPLIED OPTICS, 1991, 30 (27) :3938-3943
[3]   Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA [J].
Choi, Yonghoon ;
Vay, Stephanie A. ;
Vadrevu, Krishna P. ;
Soja, Amber J. ;
Woo, Jung-Hun ;
Nolf, Scott R. ;
Sachse, Glen W. ;
Diskin, Glenn S. ;
Blake, Donald R. ;
Blake, Nicola J. ;
Singh, Hanwant B. ;
Avery, Melody A. ;
Fried, Alan ;
Pfister, Leonhard ;
Fuelberg, Henry E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D7)
[4]   The orbiting carbon observatory (OCO) mission [J].
Crisp, D ;
Atlas, RM ;
Breon, FM ;
Brown, LR ;
Burrows, JP ;
Ciais, P ;
Connor, BJ ;
Doney, SC ;
Fung, IY ;
Jacob, DJ ;
Miller, CE ;
O'Brien, D ;
Pawson, S ;
Randerson, JT ;
Rayner, P ;
Salawitch, RJ ;
Sander, SP ;
Sen, B ;
Stephens, GL ;
Tans, PP ;
Toon, GC ;
Wennberg, PO ;
Wofsy, SC ;
Yung, YL ;
Kuang, ZM ;
Chudasama, B ;
Sprague, G ;
Weiss, B ;
Pollock, R ;
Kenyon, D ;
Schroll, S .
TRACE CONSTITUENTS IN THE TROPOSPHERE AND LOWER STRATOSPHERE, 2004, 34 (04) :700-709
[5]   Aerosol transport in the California Central Valley observed by airborne lidar [J].
De Young, RJ ;
Grant, VB ;
Severance, K .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (21) :8351-8357
[6]  
Dereniak E., 1991, WILEY SERIES APPL OP
[7]   Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar:: a sensitivity analysis [J].
Ehret, G. ;
Kiemle, C. ;
Wirth, M. ;
Amediek, A. ;
Fix, A. ;
Houweling, S. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 90 (3-4) :593-608
[8]   Comparison among error calculations in differential absorption lidar measurements [J].
Fiorani, L ;
Durieux, E .
OPTICS AND LASER TECHNOLOGY, 2001, 33 (06) :371-377
[9]   Total internal partition sums for molecules in the terrestrial atmosphere [J].
Gamache, RR ;
Kennedy, S ;
Hawkins, R ;
Rothman, LS .
JOURNAL OF MOLECULAR STRUCTURE, 2000, 517 :407-425
[10]   Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric Co2 mixing ratio in the boundary layer [J].
Gibert, Fabien ;
Flamant, Pierre H. ;
Bruneau, Didier ;
Loth, Claude .
APPLIED OPTICS, 2006, 45 (18) :4448-4458