Deep learning based object tracking for 3D microstructure reconstruction

被引:3
作者
Ma, Boyuan [1 ,2 ,3 ,5 ]
Xu, Yuting [4 ]
Chen, Jiahao [1 ,2 ,3 ,5 ]
Puquan, Pan [4 ]
Ban, Xiaojuan [1 ,2 ,3 ,5 ]
Wang, Hao [6 ]
Xue, Weihua [6 ,7 ]
机构
[1] Univ Sci & Technol Beijing, Shunde Grad Sch, Beijing, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing, Peoples R China
[3] Univ Sci & Technol Beijing, Inst Artificial Intelligence, Beijing, Peoples R China
[4] South China Univ Technol, Int Sch Adv Mat, Guangzhou, Peoples R China
[5] Univ Sci & Technol Beijing, Beijing Key Lab Knowledge Engn Mat Sci, Beijing, Peoples R China
[6] Sch Mat Sci & Engn, Beijing, Peoples R China
[7] Liaoning Tech Univ, Sch Mat Sci & Technol, Fuxin, Peoples R China
基金
中国国家自然科学基金;
关键词
3D microstructure reconstruction; Object tracking; Deep learning; Image classification; CLUSTERINGS;
D O I
10.1016/j.ymeth.2022.04.001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In medical and material science, 3D reconstruction is of great importance for quantitative analysis of micro-structures. After the image segmentation process of serial slices, in order to reconstruct each local structure in volume data, it needs to use precise object tracking algorithm to recognize the same object region in adjacent slice. Suffering from weak representative hand-crafted features, traditional object tracking methods always draw out under-segmentation results. In this work, we have proposed an adjacent similarity based deep learning tracking method (ASDLTrack) to reconstruct 3D microstructure. By transferring object tracking problem to classification problem, it can utilize powerful representative ability of convolutional neural network in pattern recognition. Experiments in three datasets with three metrics demonstrate that our algorithm achieves the promising performance compared to traditional methods.
引用
收藏
页码:172 / 178
页数:7
相关论文
共 43 条
[1]   Crowdsourcing the creation of image segmentation algorithms for connectomics [J].
Arganda-Carreras, Ignacio ;
Turaga, Srinivas C. ;
Berger, Daniel P. ;
Ciresan, Dan ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Schmidhuber, Juergen ;
Laptev, Dmitry ;
Dwivedi, Sarvesh ;
Buhmann, Joachim M. ;
Liu, Ting ;
Seyedhosseini, Mojtaba ;
Tasdizen, Tolga ;
Kamentsky, Lee ;
Burget, Radim ;
Uher, Vaclav ;
Tan, Xiao ;
Sun, Changming ;
Pham, Tuan D. ;
Bas, Erhan ;
Uzunbas, Mustafa G. ;
Cardona, Albert ;
Schindelin, Johannes ;
Seung, H. Sebastian .
FRONTIERS IN NEUROANATOMY, 2015, 9 :1-13
[2]   Advanced Steel Microstructural Classification by Deep Learning Methods [J].
Azimi, Seyed Majid ;
Britz, Dominik ;
Engstler, Michael ;
Fritz, Mario ;
Muecklich, Frank .
SCIENTIFIC REPORTS, 2018, 8
[3]  
Ban X., 2020, MATER SCI TECH-LOND, V28, P68
[4]  
Cignoni P., 2019, MESHLAB
[5]  
Ensafi S, 2014, IEEE ENG MED BIO, P6732, DOI 10.1109/EMBC.2014.6945173
[6]   Reconstruction of three-dimensional grain structure in polycrystalline iron via an interactive segmentation method [J].
Feng, Min-nan ;
Wang, Yu-cong ;
Wang, Hao ;
Liu, Guo-quan ;
Xue, Wei-hua .
INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2017, 24 (03) :257-263
[7]   Large Scale Image Segmentation with Structured Loss Based Deep Learning for Connectome Reconstruction [J].
Funke, Jan ;
Tschopp, Fabian ;
Grisaitis, William ;
Sheridan, Arlo ;
Singh, Chandan ;
Saalfeld, Stephan ;
Turaga, Srinivas C. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (07) :1669-1680
[8]  
Gao H, 2004, 2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 2, PROCEEDINGS, P81
[9]  
Glorot X., 2010, P 13 INT C ART INT S, P249
[10]   METALLURGY Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J].
Hu, J. ;
Shi, Y. N. ;
Sauvage, X. ;
Sha, G. ;
Lu, K. .
SCIENCE, 2017, 355 (6331) :1292-+