Potassium channel gene therapy can prevent neuron death resulting from necrotic and apoptotic insults

被引:35
作者
Lee, AL [1 ]
Dumas, TC [1 ]
Tarapore, PE [1 ]
Webster, BR [1 ]
Ho, DY [1 ]
Kaufer, D [1 ]
Sapolsky, RM [1 ]
机构
[1] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
关键词
central nervous system; herpes simplex virus; neurotoxicity; rodent; seizure;
D O I
10.1046/j.1471-4159.2003.01880.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Necrotic insults such as seizure are excitotoxic. Logically, membrane hyperpolarization by increasing outwardly conducting potassium channel currents should attenuate hyperexcitation and enhance neuron survival. Therefore, we overexpressed a small-conductance calcium-activated (SK2) or voltage-gated (Kv1.1) channel via viral vectors in cultured hippocampal neurons. We found that SK2 or Kv1.1 protected not only against kainate or glutamate excitotoxicity but also increased survival after sodium cyanide or staurosporine. In vivo overexpression of either channel in dentate gyrus reduced kainate-induced CA3 lesions. In hippocampal slices, the kainate-induced increase in granule cell excitability was reduced by overexpression of either channel, suggesting that these channels exert their protective effects during hyperexcitation. It is also important to understand any functional disturbances created by transgene overexpression alone. In the absence of insult, overexpression of Kv1.1, but not SK2, reduced baseline excitability in dentate gyrus granule cells. Furthermore, while no behavioral disturbances during spatial acquisition in the Morris water maze were observed with overexpression of either channel, animals overexpressing SK2, but not Kv1.1, exhibited a memory deficit post-training. This difference raises the possibility that the means by which these channel subtypes protect may differ. With further development, potassium channel vectors may be an effective pre-emptive strategy against necrotic insults.
引用
收藏
页码:1079 / 1088
页数:10
相关论文
共 55 条
[1]   GLUTAMATE-INDUCED NEURONAL DEATH - A SUCCESSION OF NECROSIS OR APOPTOSIS DEPENDING ON MITOCHONDRIAL-FUNCTION [J].
ANKARCRONA, M ;
DYPBUKT, JM ;
BONFOCO, E ;
ZHIVOTOVSKY, B ;
ORRENIUS, S ;
LIPTON, SA ;
NICOTERA, P .
NEURON, 1995, 15 (04) :961-973
[2]   An energy budget for signaling in the grey matter of the brain [J].
Attwell, D ;
Laughlin, SB .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (10) :1133-1145
[3]  
Ben-Ari Y, 1990, Adv Exp Med Biol, V268, P481
[4]   3 POTASSIUM CHANNELS IN RAT POSTERIOR PITUITARY NERVE-TERMINALS [J].
BIELEFELDT, K ;
ROTTER, JL ;
JACKSON, MB .
JOURNAL OF PHYSIOLOGY-LONDON, 1992, 458 :41-67
[5]   CALCIUM-ACTIVATED POTASSIUM CHANNELS [J].
BLATZ, AL ;
MAGLEBY, KL .
TRENDS IN NEUROSCIENCES, 1987, 10 (11) :463-467
[6]   Small-conductance calcium-activated potassium channels [J].
Bond, CT ;
Maylie, J ;
Adelman, JP .
MOLECULAR AND FUNCTIONAL DIVERSITY OF ION CHANNELS AND RECEPTORS, 1999, 868 :370-378
[7]   Neural apoptosis [J].
Bredesen, DE .
ANNALS OF NEUROLOGY, 1995, 38 (06) :839-851
[8]   Endocrine modulation of the neurotoxicity of gp120: Implications for AIDS-related dementia complex [J].
Brooke, S ;
Chan, R ;
Howard, S ;
Sapolsky, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (17) :9457-9462
[9]   Quantification of neuron survival in monolayer cultures using an enzyme-linked immunosorbent assay approach, rather than by cell counting [J].
Brooke, SM ;
Bliss, TM ;
Franklin, LR ;
Sapolsky, RM .
NEUROSCIENCE LETTERS, 1999, 267 (01) :21-24
[10]   REGULATION OF EXCITATORY TRANSMISSION AT HIPPOCAMPAL SYNAPSES BY CALBINDIN D-28K [J].
CHARD, PS ;
JORDAN, J ;
MARCUCCILLI, CJ ;
MILLER, RJ ;
LEIDEN, JM ;
ROOS, RP ;
GHADGE, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (11) :5144-5148