Molecular architecture of full-length KcsA -: Role of cytoplasmic domains in ion permeation and activation gating

被引:208
作者
Cortes, DM
Cuello, LG
Perozo, E
机构
[1] Univ Virginia, Hlth Sci Ctr, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22906 USA
[2] Univ Virginia, Hlth Sci Ctr, Ctr Struct Biol, Charlottesville, VA 22906 USA
关键词
KcsA; cytoplasmic domains; EPR spectroscopy; three-dimensional fold;
D O I
10.1085/jgp.117.2.165
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The molecular architecture of the NH2 and COOH termini of the prokaryotic potassium channel KesA has been determined using site-directed spin-labeling methods and paramagnetic resonance EPR spectroscopy: Cysteine mutants were generated (residues 5-24 and 121-160) and spin labeled, and the X-band CW EPR spectra were obtained from liposome-reconstituted channels at room temperature. Data on probe mobility (Delta Ho-1), accessibility parameters (PiO(2) and Pi NiEdda), and inter-subunit spin-spin interaction (Omega) were used as structural constraints to build a three-dimensional folding model of these cytoplasmic domains from a set of simulated annealing and restrained molecular dynamics runs. 32 backbone structures were generated and averaged using fourfold symmetry, and a final mean structure was obtained from the eight lowest energy runs. Based on the present data, together with information from the KcsA crystal structure, a model for the three-dimensional fold of full-length KcsA was constructed. In this model, the NH2 terminus of KcsA forms an alpha -helix anchored at the membrane-water interface, while the COOH terminus forms a right-handed four-helix bundle that extend some 40-50 Angstrom towards the cytoplasm. Functional analysis of COOH-terminal deletion constructs suggest that, while the COOH terminus does not play a substantial role In determining ion permeation properties, it exerts a modulatory role in the pH-dependent gating mechanism.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 50 条
[1]   PROTEIN HISTIDINE KINASES AND SIGNAL-TRANSDUCTION IN PROKARYOTES AND EUKARYOTES [J].
ALEX, LA ;
SIMON, MI .
TRENDS IN GENETICS, 1994, 10 (04) :133-138
[2]   A COLLISION GRADIENT-METHOD TO DETERMINE THE IMMERSION DEPTH OF NITROXIDES IN LIPID BILAYERS - APPLICATION TO SPIN-LABELED MUTANTS OF BACTERIORHODOPSIN [J].
ALTENBACH, C ;
GREENHALGH, DA ;
KHORANA, HG ;
HUBBELL, WL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (05) :1667-1671
[3]   STRUCTURAL STUDIES ON TRANSMEMBRANE PROTEINS .2. SPIN LABELING OF BACTERIORHODOPSIN MUTANTS AT UNIQUE CYSTEINES [J].
ALTENBACH, C ;
FLITSCH, SL ;
KHORANA, HG ;
HUBBELL, WL .
BIOCHEMISTRY, 1989, 28 (19) :7806-7812
[4]   Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli [J].
Blount, P ;
Sukharev, SI ;
Schroeder, MJ ;
Nagle, SK ;
Kung, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (21) :11652-11657
[5]   SIGNAL TRANSDUCTION PATHWAYS INVOLVING PROTEIN-PHOSPHORYLATION IN PROKARYOTES [J].
BOURRET, RB ;
BORKOVICH, KA ;
SIMON, MI .
ANNUAL REVIEW OF BIOCHEMISTRY, 1991, 60 :401-441
[6]   Structure of the MscL homolog from Mycobacterium tuberculosis:: A gated mechanosensitive ion channel [J].
Chang, G ;
Spencer, RH ;
Lee, AT ;
Barclay, MT ;
Rees, DC .
SCIENCE, 1998, 282 (5397) :2220-2226
[7]   HYDROPHOBICITY SCALES AND COMPUTATIONAL TECHNIQUES FOR DETECTING AMPHIPATHIC STRUCTURES IN PROTEINS [J].
CORNETTE, JL ;
CEASE, KB ;
MARGALIT, H ;
SPOUGE, JL ;
BERZOFSKY, JA ;
DELISI, C .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 195 (03) :659-685
[8]   Structural dynamics of the Streptomyces lividans K+ channel (SKC1): Oligomeric stoichiometry and stability [J].
Cortes, DM ;
Perozo, E .
BIOCHEMISTRY, 1997, 36 (33) :10343-10352
[9]   pH-dependent gating in the Streptomyces lividans K+ channel [J].
Cuello, LG ;
Romero, JG ;
Cortes, DM ;
Perozo, E .
BIOCHEMISTRY, 1998, 37 (10) :3229-3236
[10]   MODIFIED RECONSTITUTION METHOD USED IN PATCH-CLAMP STUDIES OF ESCHERICHIA-COLI ION CHANNELS [J].
DELCOUR, AH ;
MARTINAC, B ;
ADLER, J ;
KUNG, C .
BIOPHYSICAL JOURNAL, 1989, 56 (03) :631-636